Title: Modelling and Forecasting Stock Index Volatility
1Modelling and Forecasting Stock Index Volatility
a comparison between GARCH models and the
Stochastic Volatility model
- Supervisor
Professor Moisa Altar
2Table of Contents
- Competing volatility models
- Data description
- Model estimates and forecasting performances
- Concluding remarks
3The Stylized Facts
Why model and forecast volatility?
- investment
- security valuation
- risk management
- policy issues
- The distribution of financial time series has
heavier tails than the normal distribution - Highly correlated values for the squared returns
- Changes in the returns tend to cluster
4Competing Volatility Models
- ARCH/GARCH class of models
- Engle (1982)
- Bollerslev (1986)
- Nelson (1991)
- Glosten, Jaganathan, and Runkle (1993)
- Stochastic Volatility (Variance) model
- Taylor (1986)
5The GARCH model
- Parameter constraints
- ensuring variance to be positive
- stationarity condition
6- Error distribution
- 1. Normal
- The density function
- Implied kurtosis
- k3
- The log-likelihood function
7- 2. Student-t
- Bollerslev (1987)
- The density function
- Implied kurtosis
-
- The log-likelihood function
8- 3. Generalized Error Distribution (GED)
- Nelson (1991)
- The density function
- Implied kurtosis
- The log-likelihood function
9The SV model
- Parameter constraints
- stationarity condition
- Linearized form
10Forecast Evaluation Measures
- Root Mean Square Error (RMSE)
- Mean Absolute Error (MAE)
- Theil-U Statistics
- LINEX loss function
11Data Description
Daily closing prices of BET-C index
- data series BET-C stock index
- time length
- April 17, 1998 - April 21, 2003
- 1255 daily returns
- Pt daily closing value of BET-C
- Software Eviews, Ox
- Descriptive statistics for BET-C return series
Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Jarque-Bera Prob.
0.000102 -0.0000519 0.1038602 -0.0975698 0.0153105 0.106634 9.423705 2160.141 0.000
12Tested Hypotheses
- 1. Normality
-
- Histogram of the BET-C returns
BET-C return quantile plotted -
against the Normal
quantile
13BET-C return series
BET-C squared return series
14Unit root tests for BET-C return series
ADF Test Statistic -13.53269 1 Critical Value -3.4384
5 Critical Value -2.8643
10 Critical Value -2.5683
MacKinnon critical values for rejection of hypothesis of a unit root. MacKinnon critical values for rejection of hypothesis of a unit root. MacKinnon critical values for rejection of hypothesis of a unit root. MacKinnon critical values for rejection of hypothesis of a unit root.
PP Test Statistic -28.07887 1 Critical Value -3.4384
5 Critical Value -2.8643
10 Critical Value -2.5682
MacKinnon critical values for rejection of hypothesis of a unit root. MacKinnon critical values for rejection of hypothesis of a unit root. MacKinnon critical values for rejection of hypothesis of a unit root. MacKinnon critical values for rejection of hypothesis of a unit root.
15Autocorrelation coefficients for returns (lags 1
to 36)
16Autocorrelation coefficients for squared returns
(lags 1 to 36)
17Model estimates and forecasting performances
- Methodology
-
- two sets 1004 observations for model estimation
- 252 observations for
out-of-sample forecast evaluation
Mean equation specification
Constant Y(-1) R-squared
Mean equation with intercept -0.000355 0.276034 0.076278
t-statistic (probability that the coefficient equals 0) -0.768264 (0.4425) 9.087175 (0.000) -
Mean equation without intercept - 0.276769 0.075733
t-statistic (probability that the coefficient equals 0) - 9.117758 (0.000) -
18Residual tests
Lag number Correlogram of residuals Correlogram of residuals Correlogram of squared residuals Correlogram of squared residuals
Lag number Q-stat Prob Q-stat Prob
1 0.0085 0.927 103.60 0.000
5 3.3598 0.645 162.76 0.000
10 5.7904 0.833 165.21 0.000
15 8.0496 0.922 167.21 0.000
- ARCH-LM test and White Heteroscedasticity Test
ARCH Test ARCH Test ARCH Test ARCH Test
F-statistic 114.8229 Probability 0.000000
ObsR-squared 103.1921 Probability 0.000000
White Heteroskedasticity Test White Heteroskedasticity Test White Heteroskedasticity Test White Heteroskedasticity Test
F-statistic 63.32189 Probability 0.000000
ObsR-squared 112.7329 Probability 0.000000
19GARCH (1,1) Normal Distribution QML parameter
estimates
Coefficient Std.Error t-value Probability
AR (1) 0.302055 0.045561 6.630 0.0000
Constant (V) 0.0000472947 0.141153 3.351 0.0008
ARCH(Alpha1) 0.320832 0.065118 4.927 0.0000
GARCH(Beta1) 0.483147 0.102838 4.698 0.0000
Diagnostic test based on the news impact curve
(EGARCH vs. GARCH)
Test
Prob Sign Bias t-Test
0.41479 0.67830 Negative Size Bias
t-Test 0.66864
0.50373 Positive Size Bias t-Test
0.02906 0.97682 Joint Test for the
Three Effects 0.47585 0.92416
GARCH (1,1) Student-T Distribution QML
parameter estimates
Coefficient Std.Error t-value Probability
AR(1) 0.280817 0.037364 7.516 0.0000
Constant(V) 0.0000527251 0.144746 3.643 0.0003
ARCH(Alpha1) 0.350230 0.067874 5.160 0.0000
GARCH(Beta1) 0.439533 0.091994 4.778 0.0000
Student(DF) 4.512539 0.656110 6.878 0.0000
Diagnostic test based on the news impact curve
(EGARCH vs. GARCH)
Test
Prob Sign Bias t-Test
0.38456 0.70056 Negative Size Bias
t-Test 0.81038
0.41772 Positive Size Bias t-Test
0.21808 0.82736 Joint Test for the
Three Effects 0.73189 0.86568
20GARCH (1,1) GED Distribution QML parameter
estimates
Coefficient Std.Error t-value Probability
AR(1) 0.285181 0.057321 4.975 0.0000
Constant(V) 0.0000496321 0.130000 3.818 0.0001
ARCH(Alpha1) 0.333678 0.062854 5.309 0.0000
GARCH(Beta1) 0.450807 0.091152 4.946 0.0000
Student(DF) 1.172517 0.081401 14.40 0.0000
Diagnostic test based on the news impact curve
(EGARCH vs. GARCH)
Test Prob Sign
Bias t-Test
0.47340 0.63592 Negative Size Bias t-Test
0.82446 0.40968 Positive Size
Bias t-Test 0.14047
0.88829 Joint Test for the Three Effects
0.74931 0.86155
- SV model
- To estimate the SV model, the return series was
first filtered in order to eliminate the first
order autocorrelation of the returns
SV QML parameter estimates
Coefficient Std. Error z-Statistic Probability
C(1) -1.269102 0.450023 -2.820081 0.0048
C(2) 0.858869 0.050340 17.06149 0.0000
C(3) -1.486221 0.456019 -3.259119 0.0011
21In-sample model evaluationa) Residual tests
- Autocorrelation of the residuals
Lag GARCH(1,1) Nomal GARCH(1,1) Nomal GARCH(1,1) Student-T GARCH(1,1) Student-T GARCH(1,1) GED GARCH(1,1) GED SV SV
Lag Q-stat. p-value Q-stat. p-value Q-stat. p-value Q-stat. p-value
1 1.131 0.287 2.289 0.130 2.014 0.156 0.506 0.477
5 3.286 0.511 4.755 0.313 4.408 0354 2.802 0.591
10 5.654 0.774 7.046 0.632 6.720 0.667 6.237 0.716
15 8.679 0.851 10.144 0.752 9.796 0.777 7.571 0.910
- Autocorrelation of the squared residuals
Lag GARCH(1,1) Nomal GARCH(1,1) Nomal GARCH(1,1) Student-T GARCH(1,1) Student-T GARCH(1,1) GED GARCH(1,1) GED SV SV
Lag Q-stat. p-value Q-stat. p-value Q-stat. p-value Q-stat. p-value
1 0.127 1 0.204 1 0.186 1 0.589 0.443
5 3.198 0.362 3.606 0.307 3.499 0.321 2.681 0.613
10 6.033 0.644 6.235 0.621 6.180 0.627 6.539 0.685
15 6.782 0.913 6.936 0.905 6.895 0.907 8.824 0.842
Unexplained kurtosis
GARCH (1,1) Normal 4.28
GARCH (1,1) Student-t -7.21
GARCH (1,1) GED 2.56
SV -2.05
22b) In-sample forecast evaluation
RMSE MAE THEIL-U1
GARCH 11 Normal 0.0000196062 0.000257336 0.646352
GARCH 11 T 0.0000195026 0.000256516 0.639539
GARCH 11 GED 0.0000194814 0.000253146 0.638149
SV 0.0000186253 0.000231101 0.583293
1 Benchmark model - Random Walk
LINEX a-20 a-10 a 10 a 20
GARCH 11 Normal 7,70895E-09 1,92751E-09 1,92806E-09 7,71335E-09
GARCH 11 T 7,62777E-09 1,9072E-09 1,90773E-09 7,63198E-09
GARCH 11 GED 7,61114E-09 1,90305E-09 1,90359E-09 7,61545E-09
SV 6,95655E-09 1,73942E-09 1,73999E-09 6,96113E-09
23Out-of-sample Forecast Evaluation
- Forecast methodology
- - rolling sample window 1004 observations
- - at each step, the n-step ahead forecast
is stored - - n1, 5, 10
- Benchmark realized volatility squared returns
24Forecast output
a) GARCH (1,1) Normal
c) GARCH (1,1) GED
b) GARCH (1,1) Student-t
d) SV
25Evaluation Measures
- 1-step ahead forecast evaluation
RMSE MAE THEIL-U1
GARCH 11 Normal 0,000035300 0,00022591 0,583721
GARCH 11 T 0,000035111 0,000204242 0,580597
GARCH 11 GED 0,000035760 0,000203486 0,591337
SV 0,000048823 0,000253071 0,807336
1 Benchmark model - Random Walk
LINEX a-20 a-10 a 10 a 20
GARCH 11 Normal 6,30398E-09 1,57614E-09 1,57644E-09 6,30638E-09
GARCH 11 T 6,23593E-09 1,55923E-09 1,55971E-09 6,2398E-09
GARCH 11 GED 6,46868E-09 1,61743E-09 1,61795E-09 6,47286E-09
SV 1,2055E-08 3,01454E-09 3,01612E-09 1,20676E-08
26- 5-step ahead forecast evaluation
RMSE MAE THEIL-U1
GARCH 11 Normal 0.0000512767 0.0003042315 0.847915
GARCH 11 T 0.0000512001 0.0003077174 0.846648
GARCH 11 GED 0.0000511668 0.0002983467 0.846097
SV 0.0000511653 0.0002851430 0.846073
1 Benchmark model - Random Walk
LINEX a-20 a-10 a 10 a 20
GARCH 11 Normal 1.3297E-08 3.325E-09 3.3268E-09 1.33108E-08
GARCH 11 T 1.3257E-08 3.315E-09 3.3169E-09 1.32711E-08
GARCH 11 GED 1.3241E-08 3.311E-09 3.3126E-09 1.32539E-08
SV 1.3239E-08 3.310E-09 3.3125E-09 1.32534E-08
27- 10-step ahead forecast evaluation
RMSE MAE THEIL-U1
GARCH 11 Normal 0.0000513675 0.0003060239 0.849416
GARCH 11 T 0.0000513716 0.0003107481 0.849484
GARCH 11 GED 0.0000513779 0.000300542 0.849588
SV 0.0000514735 0.0002870131 0.851169
1 Benchmark model - Random Walk
LINEX a-20 a-10 a 10 a 20
GARCH 11 Normal 1,33445E-08 3,33699E-09 3,33871E-09 1,33583E-08
GARCH 11 T 1,33467E-08 3,33753E-09 3,33925E-09 1,33604E-08
GARCH 11 GED 1,33499E-08 3,33834E-09 3,34007E-09 1,33637E-08
SV 1,33996E-08 3,35077E-09 3,35251E-09 1,34135E-08
28Comparison between the statistical features of
the two sample periods
In-sample Out-of-sample
Number of observations 1004 252
Mean -0.000468 0.002371
Median -0.000378 0.001137
Maximum 0.093332 0.103860
Minimum -0.097570 -0.065731
Standard Deviation 0.015209 0.015531
Skewness -0.116772 0.925148
Kurtosis 8.666434 11.94869
Jarque-Bera 1344.146 880.2563
Probability 0 0
29Concluding remarks
- In-sample analysis
- a) residual tests all models may
be appropriate - b) evaluation measures SV model is
the best performer - Out-of-sample analysis
- - for a 1-day forecast horizon GARCH
models outperform SV - - for the 5-day and 10-day forecast
horizon, model performances seem to converge - - the best model changes with
forecast horizon and with forecast evaluation
measure - - there is no clear winner
30Concluding remarks
- Sample construction problems
- Further research
- - allowing for switching regimes
- - allowing for leptokurtotic
distributions in the SV - - a better proxy for realized volatility
31Bibliography
- Alexander, Carol (2001) Market Models - A Guide
to Financial Data Analysis, John Wiley Sons,
Ltd. - Andersen, T. G. and T. Bollerslev (1997) -
Answering the Skeptics Yes, Standard Volatility
Models Do Provide Accurate Forecasts,
International Economic Review - Armstrong, J.S. (1995) - On the Selection of
Error Measures for Comparisons Among Forecasting
Methods, Journal of Forecasting - Armstrong, J.S (1978) Forecasting with
Econometric Methods Folklore versus Fact,
Journal of Business, 51 (4), 1978, 549-564 - Bluhm, H.H.W. and J. Yu (2000) - Forecasting
volatility Evidence from the German stock
market, Working paper, University of Auckland - Bollerslev, Tim, Robert F. Engle and Daniel B.
Nelson (1994) ARCH Models, Handbook of
Econometrics, Volume 4, Chapter 49, North
Holland - Byström, H. (2001) - Managing Extreme Risks in
Tranquil and Volatile Markets Using Conditional
Extreme Value Theory, Department of Economics,
Lund University - Christodoulakis, G.A. and Stephen E. Satchell
(2002) Forecasting Using Log Volatility Models,
Cass Business School, Research Paper - Christoffersen, P. F and F. X. Diebold. (1997) -
How Relevant is Volatility Forecasting for
Financial Risk Management?, The Wharton School,
University of Pennsylvania - Engle, R.F. (1982) Autoregressive conditional
heteroskedasticity with estimates of the variance
of UK inflation, Econometrica, 50, pp. 987-1008 - Engle, R.F. and Victor K. Ng (1993) Measuring
and Testing the Impact of News on Volatility, The
Journal of Fiance, Vol. XLVIII, No. 5 - Engle, R. (2001) Garch 101 The Use of
ARCH/GARCH Models in Applied Econometrics,
Journal of Economic Perspectives Volume 15,
Number 4 Fall 2001 Pages 157-168 - Engle, R. and A. J. Patton (2001) What good is
a volatility model?, Research Paper, Quantitative
Finance, Volume 1, 237-245 - Engle, R. (2001) New Frontiers for ARCH Models,
prepared for Conference on Volatility Modelling
and Forecasting, Perth, Australia, September
2001 - Glosten, L. R., R. Jaganathan, and D. Runkle
(1993) On the Relation between the Expected
Value and the Volatility of the Normal Excess
Return on Stocks, Journal of Finance, 48,
1779-1801 - Hamilton, J.D. (1994) Time Series Analysis,
Princeton University Press - Hamilton J.D. (1994) State Space Models,
Handbook of Econometrics, Volume 4, Chapter 50,
North Holland
32- Hol, E. and S. J. Koopman (2000) - Forecasting
the Variability of Stock Index Returns with
Stochastic Volatility Models and Implied
Volatility, Tinbergen Institute Discussion Paper - Koopman, S.J. and Eugenie Hol Uspenski (2001)
The Stochastic volatility in Mean model
Empirical evidence from international stock
markets, - Liesenfeld, R. and R.C. Jung (2000) Stochastic
Volatility Models Conditional Normality versus
Heavy-Tailed Distributions, Journal of Applied
Econometrics, 15, 137-160 - Lopez, J.A.(1999) Evaluating the Predictive
Accuracy of Volatility Models, Economic Research
Deparment, Federal Reserve Bank of San Francisco - Nelson, Daniel B. (1991) Conditional
Heteroskedasticity in Asset Returns A New
Approach, Econometrica, 59, 347-370 - Ozaki, T. and P.J. Thomson (1998)
Transformation and Seasonal Adjustment, Technical
Report, Institute of Statistics and Operations
Research, New Zealand - Peters, J. (2001) - Estimating and Forecasting
Volatility of Stock Indices Using Asymmetric
GARCH Models and (Skewed) Student-T Densities,
Ecole dAdministration des Affaires, University
of Liege - Peters, J. and S. Laurent (2002) A Tutorial for
G_at_RCH 2.3, a Complete Ox Package for Estimating
and Forecasting ARCH Models - Pindyck, R.S and D.L. Rubinfeld (1998)
Econometric Models and Economic Forecasts,
Irwin/McGraw-Hill - Poon, S.H. and C. Granger (2001) - Forecasting
Financial Market Volatility - A Review,
University of Lancaster, Working paper - Ruiz, E. (1994) - Quasi-Maximum Likelihood
Estimation of Stochastic Volatility Models,
Journal of Econometrics, 63, 289-306 - Ruiz, Esther, Angeles Carnero and Daniel Pena
(2001) Is Stochastic Volatility More Flexible
than Garch? , Universidad Carlos III de Madrid,
Statistics and Econometrics Series, Working Paper
01-08 - Sandmann, G. and S.J. Koopman (1997) Maximum
Likelihood Estimation of Stochastic Volatility
Models, Financial Markets Group, London School of
Economics, Discussion Paper 248 - Shephard, H. (1993) Fitting Nonlinear
Time-series Models with Applications to
stochastic Variance models, Journal of Applied
Econometrics, Vol. 8, S135-S152 - Shephard, Neil, S. Kim and S. Chib (1998)
Stochastic Volatility Likelihood Inference and
Comparison with ARCH Models, Review of Economic
Studies 65, 361-393 - Taylor, S.J. (1986) - Modelling Financial Time
Series, John Wiley - Terasvirta, T. (1996) - Two Stylized Facts and
the GARCH(1,1) Model, W.P. Series in Finance and
Economics 96, Stockholm School of Economics - Walsh, D. and G. Tsou (1998) - Forecasting Index
Volatility Sampling Interval and Non-Trading
Effects, Applied Financial Economics, 8, 477-485
33Appendix GARCH mean equation
1. The AR(1) model with intercept
Dependent Variable Y Dependent Variable Y Dependent Variable Y Dependent Variable Y Dependent Variable Y
Method Least Squares Method Least Squares Method Least Squares Method Least Squares Method Least Squares
Date 06/23/03 Time 0045 Date 06/23/03 Time 0045 Date 06/23/03 Time 0045 Date 06/23/03 Time 0045 Date 06/23/03 Time 0045
Sample(adjusted) 3 1004 Sample(adjusted) 3 1004 Sample(adjusted) 3 1004 Sample(adjusted) 3 1004 Sample(adjusted) 3 1004
Included observations 1002 after adjusting endpoints Included observations 1002 after adjusting endpoints Included observations 1002 after adjusting endpoints Included observations 1002 after adjusting endpoints Included observations 1002 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C -0.000355 0.000462 -0.768264 0.4425
Y(-1) 0.276034 0.030376 9.087175 0.0000
R-squared 0.076278 Mean dependent var Mean dependent var -0.000487
Adjusted R-squared 0.075354 S.D. dependent var S.D. dependent var 0.015204
S.E. of regression 0.014620 Akaike info criterion Akaike info criterion -5.610880
Sum squared resid 0.213740 Schwarz criterion Schwarz criterion -5.601080
Log likelihood 2813.051 F-statistic F-statistic 82.57675
Durbin-Watson stat 2.002722 Prob(F-statistic) Prob(F-statistic) 0.000000
342.The AR(1) model without intercept
Dependent Variable Y Dependent Variable Y Dependent Variable Y Dependent Variable Y Dependent Variable Y
Method Least Squares Method Least Squares Method Least Squares Method Least Squares Method Least Squares
Date 06/23/03 Time 0046 Date 06/23/03 Time 0046 Date 06/23/03 Time 0046 Date 06/23/03 Time 0046 Date 06/23/03 Time 0046
Sample(adjusted) 3 1004 Sample(adjusted) 3 1004 Sample(adjusted) 3 1004 Sample(adjusted) 3 1004 Sample(adjusted) 3 1004
Included observations 1002 after adjusting endpoints Included observations 1002 after adjusting endpoints Included observations 1002 after adjusting endpoints Included observations 1002 after adjusting endpoints Included observations 1002 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
Y(-1) 0.276769 0.030355 9.117758 0.0000
R-squared 0.075733 Mean dependent var Mean dependent var -0.000487
Adjusted R-squared 0.075733 S.D. dependent var S.D. dependent var 0.015204
S.E. of regression 0.014617 Akaike info criterion Akaike info criterion -5.612286
Sum squared resid 0.213866 Schwarz criterion Schwarz criterion -5.607386
Log likelihood 2812.755 Durbin-Watson stat Durbin-Watson stat 2.003016
35Appendix Residual Tests
Date 06/23/03 Time 0048 Date 06/23/03 Time 0048 Date 06/23/03 Time 0048 Date 06/23/03 Time 0048 Date 06/23/03 Time 0048 Date 06/23/03 Time 0048 Date 06/23/03 Time 0048
Sample 3 1004 Sample 3 1004 Sample 3 1004 Sample 3 1004 Sample 3 1004 Sample 3 1004 Sample 3 1004
Included observations 1002 Included observations 1002 Included observations 1002 Included observations 1002 Included observations 1002 Included observations 1002 Included observations 1002
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
. . 1 -0.003 -0.003 0.0085 0.927
. . 2 -0.011 -0.011 0.1228 0.940
. . 3 0.041 0.041 1.8102 0.613
. . 4 0.004 0.004 1.8256 0.768
. . 5 0.039 0.040 3.3598 0.645
. . 6 0.030 0.028 4.2395 0.644
. . 7 0.013 0.014 4.4124 0.731
. . 8 0.027 0.025 5.1482 0.742
. . 9 -0.025 -0.027 5.7834 0.761
. . 10 -0.003 -0.005 5.7904 0.833
. . 11 0.034 0.029 6.9812 0.801
. . 12 0.008 0.008 7.0442 0.855
. . 13 0.030 0.029 7.9561 0.846
. . 14 -0.007 -0.009 8.0088 0.889
. . 15 0.006 0.007 8.0496 0.922
. . 16 -0.049 -0.055 10.543 0.837
. . 17 0.021 0.020 10.994 0.857
. . 18 -0.002 -0.008 10.998 0.894
. . 19 0.007 0.009 11.051 0.922
. . 20 0.023 0.023 11.599 0.929
Correlogram of Residuals
36Date 06/23/03 Time 0049 Date 06/23/03 Time 0049 Date 06/23/03 Time 0049 Date 06/23/03 Time 0049 Date 06/23/03 Time 0049 Date 06/23/03 Time 0049 Date 06/23/03 Time 0049
Sample 3 1004 Sample 3 1004 Sample 3 1004 Sample 3 1004 Sample 3 1004 Sample 3 1004 Sample 3 1004
Included observations 1002 Included observations 1002 Included observations 1002 Included observations 1002 Included observations 1002 Included observations 1002 Included observations 1002
Autocorrelation Partial Correlation AC PAC Q-Stat Prob
. . 1 0.321 0.321 103.60 0.000
. . 2 0.194 0.101 141.44 0.000
. . 3 0.125 0.041 157.05 0.000
. . 4 0.075 0.010 162.73 0.000
. . 5 0.005 -0.043 162.76 0.000
. . 6 0.008 0.005 162.82 0.000
. . 7 0.042 0.045 164.59 0.000
. . 8 0.024 0.003 165.18 0.000
. . 9 0.005 -0.012 165.21 0.000
. . 10 -0.027 -0.040 165.97 0.000
. . 11 -0.004 0.012 165.98 0.000
. . 12 -0.009 0.000 166.06 0.000
. . 13 -0.028 -0.022 166.84 0.000
. . 14 -0.011 0.005 166.96 0.000
. . 15 -0.016 -0.012 167.21 0.000
. . 16 0.007 0.020 167.26 0.000
. . 17 -0.019 -0.020 167.61 0.000
. . 18 -0.004 0.005 167.62 0.000
. . 19 0.000 0.003 167.62 0.000
. . 20 -0.017 -0.019 167.91 0.000
Correlogram of Squared Residuals
37ARCH-LM test
ARCH Test ARCH Test ARCH Test ARCH Test ARCH Test
F-statistic 114.8229 Probability Probability 0.000000
ObsR-squared 103.1921 Probability Probability 0.000000
Test Equation Test Equation Test Equation Test Equation Test Equation
Dependent Variable RESID2 Dependent Variable RESID2 Dependent Variable RESID2 Dependent Variable RESID2 Dependent Variable RESID2
Method Least Squares Method Least Squares Method Least Squares Method Least Squares Method Least Squares
Date 06/23/03 Time 0052 Date 06/23/03 Time 0052 Date 06/23/03 Time 0052 Date 06/23/03 Time 0052 Date 06/23/03 Time 0052
Sample(adjusted) 4 1004 Sample(adjusted) 4 1004 Sample(adjusted) 4 1004 Sample(adjusted) 4 1004 Sample(adjusted) 4 1004
Included observations 1001 after adjusting endpoints Included observations 1001 after adjusting endpoints Included observations 1001 after adjusting endpoints Included observations 1001 after adjusting endpoints Included observations 1001 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.
C 0.000145 1.83E-05 7.903650 0.0000
RESID2(-1) 0.321081 0.029964 10.71555 0.0000
R-squared 0.103089 Mean dependent var Mean dependent var 0.000213
Adjusted R-squared 0.102191 S.D. dependent var S.D. dependent var 0.000573
S.E. of regression 0.000543 Akaike info criterion Akaike info criterion -12.19544
Sum squared resid 0.000295 Schwarz criterion Schwarz criterion -12.18564
Log likelihood 6105.819 F-statistic F-statistic 114.8229
Durbin-Watson stat 2.064939 Prob(F-statistic) Prob(F-statistic) 0.000000
38White Heteroskedasticity Test
White Heteroskedasticity Test White Heteroskedasticity Test White Heteroskedasticity Test White Heteroskedasticity Test White Heteroskedasticity Test White Heteroskedasticity Test
F-statistic 63.32189 Probability Probability Probability 0.000000
ObsR-squared 112.7329 Probability Probability Probability 0.000000
Test Equation Test Equation Test Equation Test Equation Test Equation Test Equation
Dependent Variable RESID2 Dependent Variable RESID2 Dependent Variable RESID2 Dependent Variable RESID2 Dependent Variable RESID2 Dependent Variable RESID2
Method Least Squares Method Least Squares Method Least Squares Method Least Squares Method Least Squares Method Least Squares
Date 06/23/03 Time 0053 Date 06/23/03 Time 0053 Date 06/23/03 Time 0053 Date 06/23/03 Time 0053 Date 06/23/03 Time 0053 Date 06/23/03 Time 0053
Sample 3 1004 Sample 3 1004 Sample 3 1004 Sample 3 1004 Sample 3 1004 Sample 3 1004
Included observations 1002 Included observations 1002 Included observations 1002 Included observations 1002 Included observations 1002 Included observations 1002
Variable Coefficient Std. Error t-Statistic t-Statistic Prob.
C 0.000144 1.82E-05 7.933013 7.933013 0.0000
Y(-1) -0.000222 0.001125 -0.197479 -0.197479 0.8435
Y(-1)2 0.299471 0.026700 11.21598 11.21598 0.0000
R-squared 0.112508 Mean dependent var Mean dependent var Mean dependent var 0.000213
Adjusted R-squared 0.110731 S.D. dependent var S.D. dependent var S.D. dependent var 0.000573
S.E. of regression 0.000541 Akaike info criterion Akaike info criterion Akaike info criterion -12.20501
Sum squared resid 0.000292 Schwarz criterion Schwarz criterion Schwarz criterion -12.19031
Log likelihood 6117.708 F-statistic F-statistic F-statistic 63.32189
Durbin-Watson stat 2.075790 Prob(F-statistic) Prob(F-statistic) Prob(F-statistic) 0.000000