F - PowerPoint PPT Presentation

About This Presentation
Title:

F

Description:

F&ES 86025 Energy Systems Analysis 86025_1 Introduction to Energy Systems – PowerPoint PPT presentation

Number of Views:67
Avg rating:3.0/5.0
Slides: 22
Provided by: ArnulfG2
Category:

less

Transcript and Presenter's Notes

Title: F


1
FES 86025Energy Systems Analysis
  • 86025_1
  • Introduction to Energy Systems

2
Energy Systems
  • Interaction between
  • -- Society
  • -- Economy
  • -- Technology
  • -- Policy
  • that shape both
  • -- Demand
  • -- Supply
  • in terms of quantity, quality, costs, impacts.

3
Definitions IS Units
  • Energy Capacity to do work
  • Power Rate of energy transfer
  • Newton (N) 1 kg m/s (force)
  • Joule (J) 1 N applied over 1 m (energy)
  • Watt (W) 1 J/second (power)
  • Example 1 HP 745 W (745 J/s) for 1 hr
    0.745 kWh
  • Energy Power x Time Hence importance of load
    factors and load curves!

4
Examples of Power and Energy (both kill!)
Lightning bolt Power10,000,000 kW(1 109 Volt
x 1 104 Ampere) for 1 second 10,000
MJ/s Energy max. equiv. 2.8 MJ/hr Fazit
Even if storable/useablea lightning bolts
energycould fuel a SLK for less than 1 km!
Mercedes SLK 350Power 200,000 W (200 kW,
3.5L 6-cycl) 200,000 W/s 0.2 MJ/s
Energymax 720 MJ/hr 0.2 MJ/s (x 3600
s/hr)actual Fuel use 10 l/100km 10 x 32 MJ/l
320 MJ/hr(assuming 100 km/hr)
5
Power Examples
Human heart 1 W
Light bulb 100 W
Horse 1000 W 1 kW (kilo Watt)
Car 100,000 W 100 kW
Yale PPL 20,000,000 W 20 MW (Mega Watt)
Boeing 747at max thrust 250,000,000 W 250 MW .25 GW
Niagara Falls 2,000,000,000 W 2 GW (Giga Watt)
All US PPL 885,000,000,000 W 885 GW
All World PPL 3,500,000,000,000 W 3500 GW
All US Automobiles 230 million with 100 kW each 23,000 GW
Source updated and modified after Tester et al.,
2005.
6
Energy Units and Scales(Source IPCC Energy
Primer)
Quick recap exponentials to common basis are
additive!103 x 106 10(36) 109 or 1000 MJ
1 GJ
7
Energy Orders of Magnitude (EJ 1018 J)
  • 5,500,000 EJ Annual solar influx
  • 1,000,000 EJ Fossil occurrences
  • 50,000 EJ Fossil reserves
  • 440 EJ World energy use 2000
  • 100 EJ USA primary energy supply
  • 50 EJ OECD transport energy
    use
  • 20 EJ Saudi Arabia oil prod.
  • 4 EJ Italy oil reserves
  • 1 EJ NY city or Singapore energy
    use

Stocks flows (yr-1)
8
Rough Equivalences
  • 10 Gtoe 420 EJ
  • 1 Gtoe 42 EJ
  • 1 Quad 1 EJ
  • 1 Mtoe 42 PJ
  • 1 toe 42 GJ
  • 1 boe 6 GJ
  • 1 m3 gas 40 MJ
  • 1 kWh 4 MJ
  • 1 Btu 1 kJ

9
Converting Units
conv_fac.xls v2 class server Resources/data
10
Energy Flow Characteristics
  • Physical chemical, kinetic, electric, radiant,
  • Processing depth primary?secondary?final
  • Transaction levels producer?producerproducer?co
    nsumerconsumer?consumer (future?)
  • System boundariessecondary?final?useful?service

11
Energy Conversions Efficiencies
conversion 1st Law efficiency
Electric generator m ? e 99
Gas furnace c ? t 90-95
Small electric drive e ? m 60-65
Steam turbine t ? m 40-45
Best PV cells r ? e 20-30
Trad. Cook stove c ? t 10-15
Beef production c ? c 5-10
Fluorescent light e ? r 10
Incandescent light e ? r 2-5
Paraffin candle c ? r 1-2
Global photosynthesis r ? c 0.3
Adapted from Smil, 1998.c chemical, e
electrical, m mechanical, r radiant, t
thermal
Efficiency depends on form adequacy, technology,
scale,!!
12
Conversions are far from trivial Example of
combustion (c ? t)
  • Fuel oxidizer Products energy
  • In ideal conditions energy is the net sum of
    creation/destruction of chemical bonds--
    exothermic producing energy(e.g. CH4 as
    fuel)-- endothermic needing energy(e.g. CH4 as
    chemical feedstock)
  • But combustion is generally far away from ideal
    leading to accounting complexities (HHV, LHV) and
    most important of all emissions beyond ideal
    combustion conditions

13
Example of Methane(ideal combustion)
  • CH4 O2 ? CO2 H2O (general reaction EQ)
  • Balancing for C, H, and O1 C 1 O2 ? 1 CO24 H
    1 O2 ? 2 H2Ono oxygen in this fuel (but e.g.
    in wood!)
  • Therefore CH4 2O2 ? CO2 2H2O
  • Net energy - 2628 kJ from bonds broken3438 kJ
    from bonds created 810 kJ net energy

14
Moving beyond ideal combustionExample of CH4
Contd
  • Ideal combustion810 kJ/mole Lower Heating
    Value
  • Incl. energy from condensation of water
    vapor890 kJ/mole Higher Heating Value
  • EmissionsCO2 only in ideal case1 mole CO2
    12gC (122x16) 44 gCO2
  • Emission factors12gC/890 kJ 0.0135 gC/kJ
    13.5 gC/MJ HHV12gC/810 kJ 0.0150 gC/kJ 15.0
    kgC/GJ LHV
  • S Fuel-specific energy conversion and emission
    factors that dont specify basis (LHV or
    HHV) are useless!!

mole mass in g equals molecular weight a mole
contains 6.023 1023 molecules (Avogadros number)
15
The Real World
  • Emissions under real conditions-- combustion in
    air and not pure oxygen ?N emissions (air
    21 O, 78 N, 1 other)-- fuel impurities (S, N,
    ash, heavy metals..) -- incomplete combustion
    (e.g. hydrocarbons, CO, soot, etc)
  • Important tradeoffs higher efficiency ? higher
    combustion temperature (cf. second law of
    thermodynamics) ? higher N emissions
  • Scale dependency (emissions, and control
    possibilities) preference for large, centralized
    combustion

16
Characteristics of Some FuelsSource D. Castorph
et al., 1999, GRI, 2005.
C H S O N Ash H2O LHVkJ/g HHVkJ/g HHV/LHV
Wood 50 6 0 44 0 lt.5 10-20 14.6-16.8 15.9-18.0 1.07- 1.09
Coal(hard coal) 88 5 1 4.5 1.5 3-12 0-10 27.3-24.1 29.3-35.2 1.05-1.07
Diesel 86 13 .3 - - - - 43.0 45.9 1.07
Natural Gas(Range) CH4 74-98 CHs 0-20 H2S 0-5 CO2,O2 0-8 N2 0-5 - - 38-48 42-56 1.10- 1.17
H2 100 - - 120 142 1.18
Note difference to LHV on volume basis gas 40
MJ/m3 H2 10.8 MJ/m3
17
More info
  • v2 class server
  • Resources/data/doe_fueltable.pdf (useful even if
    non-metric)
  • NREL (liquids) http//www.nrel.gov/vehiclesandfue
    ls/apbf/progs/search1.cgi
  • Engineering Toolbox (tons of info), e.g.
  • http//www.engineeringtoolbox.com/combustion-boil
    er-fuels-t_9.html

18
Non-physical Definition of Energy
  • System boundaries, processing depth,
    upstream/downstream primary?secondary?final ?
    ?useful?service
  • Transaction levels/actors involved
    producer?producerproducer?consumerconsumer?cons
    umer (future?)

19
What means.
  • Primary energy Resources as extracted from
    nature (crude oil, solar heat)
  • Secondary energy Processed/converted energy
    (gasoline from crude oil, electricity from coal
    or hydropower)
  • Final energy (as delivered to consumer)
  • Useful energy (converted by final appliances
    (heat from radiator, light from bulb)
  • Services actual demand comfort, illumination,
    mobility, (units ephemeral!)

20
System Boundaries
  • Energy sector Primary? Final (domain of supply
    bias)
  • Energy end-use Final?Useful (domain of consumer
    bias)
  • Energy Integration (IRM, LC) Primary?Useful/Servi
    ces
  • Full Integration (IA) Whole environment (incl.
    externalities)

21
Global Energy Flows (EJ in 1990)Source modified
after Nakicenovic/Gilli/Kurz, 1996. Update IEA,
2006.
2005 Total losses 340 EJ for 160 EJ useful
energy delivered
Write a Comment
User Comments (0)
About PowerShow.com