Laura Brand - PowerPoint PPT Presentation

About This Presentation
Title:

Laura Brand

Description:

A test generation framework for quiescent real-time systems Laura Brand n Briones Dept. of CS, University of Twente, NL joint work with Ed Brinksma – PowerPoint PPT presentation

Number of Views:109
Avg rating:3.0/5.0
Slides: 35
Provided by: EdBri6
Category:
Tags: brand | laura | refusal | work

less

Transcript and Presenter's Notes

Title: Laura Brand


1
A test generation framework for quiescent
real-time systems
  • Laura Brandán Briones
  • Dept. of CS, University of Twente, NL
  • joint work with
  • Ed Brinksma

2
Do We Still Need Quiescence?
Yes!
money?
money?
coffee!
tea !
coffee?
tea?
tea?
coffee?
bang?
bang?
coffee?
tea?
tea?
coffee?
coffee!
tea !
3
Do We Need Time?
Do We Need Coffee?
Do We Have Money?
Yes!
money?
money?
coffee!
coffee?
tea !
tea?
tea?
coffee?
x0
x0
x ? 6
x ? 6
4
Overview
  • Real-time input-output transition systems
  • Timed implementation relation
  • Real-time test generation
  • Example
  • Future work (?)
  • Multi real-time input-output transition systems
  • Multi timed implementation relation
  • Multi real-time test generation

5
  • Real-time input-output transition systems

6
non-delay actions are now assumed to occur
instantaneously
  • LTS with delays
  • s ? s (d?R) with
  • (time determinism)
  • s ? s and s ? s implies ss
  • (density)
  • s ? s iff ? s s ? s and s ?
    s with dd1d2
  • (null delay)
  • s ? s iff ss

?(d)
?(d)
?(d)
?(d1)
?(d2)
?(d)
?(0)
7
  • Quiescence

8
  • For a system p, we extend the time transition
    relation (?) with d (denoted ?(p))
  • If for all o!?Lout q ?gt?,?
  • q ? q

o!
d
9
  • Timed implementation relation

10
  • impl ?tiorf spec iff
  • ttraces(?(impl)) ?
    ttraces(?(spec))
  • impl ?tiorf spec iff ?M(impl) ? ?M(spec)
  • where ?M(p) ttraces(?(p)) ? (D.L ?
    ?(M).d)

M
11
  • Outputs
  • outM(s) o!(d) s gt ? d(M) s
    quiescent
  • impl ? spec iff
  • ?? outM( impl after ? ) ? outM( spec
    after ? )

o!(d)
tiocoM
M
tiorf
ioco
12
  • Real-time test generation

13
Test cases
x 0
Test case t ? TTA TTA Test Timed Automata
x? k

, xk
on? x0
off!
  • labels in L ? ? , G(d)
  • tree-structured
  • finite, deterministic
  • final states pass and fail
  • from each state ? pass, fail
  • choose input i? and time k
  • wait k accepting all outputs o! and
  • at k provide input i?, or
  • wait accepting all outputs o! and ?

fail
x?M
off! x5 x0
? xM
off! xlt5
x?M
fail
fail
?
off!
fail
pass
14
Test Generation Algorithm (untimed)
ioco-sound conforming implementation not
rejected ioco-complete non-conforming
implementations rejected (in the limit)
Apply recursively non-deterministically (
initially S s0 )
15
Timed test generation
tiocoM-sound conforming implementation not
rejected tiocoM-complete non-conforming
implementations can be rejected
Apply recursively non-deterministically (
initially S s0 )
16
  • Example

17
Example
test
c!
t!
m?
x1
fail
x0
fail
spec
t!
c!
d
c?
fail
x1
fail
x0
t!
c!
d
fail
xM
pass
x0
t!
c!
b?
fail
impl Mk
x1
fail
x0
t!
t!
c!
c?
fail
x1
fail
x0
c!
t!
d
xM
fail
pass
fail
18
Future work
  • Extend the theory with multi input-output
  • Confirm completeness (in the old sense)
  • Evaluate applicability in practical situations
  • Deal with the imprecision in measuring physical
    time
  • Integrate with data testing

19
Overview
  • Real-time input-output transition systems
  • Timed implementation relation
  • Real-time test generation
  • Example
  • Future work (?)
  • Multi real-time input-output transition systems
  • Multi timed implementation relation
  • Multi real-time test generation

20
A generation framework for quiescent

test
real-time
multi input-output systems
input-output systems
  • Laura Brandán Briones
  • Ed Brinksma

21
amount!
card!
card?
card!
x 0
x gt 5
card!
x gt 5
Pin?
x 5
Err-P!
x 0
card!
t
x 5
x ? 5
t
Err-a!
x 5
Ok!
x 0
amount?
x 5
Ok!
x 0
x ? 5
t
t
x 5
x 5
22
Channels
23
  • Quiescence

24
  • L -quiescent (s)
  • M quiescent (s)
  • M quiescent (p)
  • M-quiescent (p)

j
j
25
Channels
26
  • Saturation

27
2 1 2 3
? d d d
amount!
card!
card!
card?
x gt 5
x 0
card!
x gt 5
Pin?
x 5
Err-P!
1 1 2
x 0
? d d
card!
x ? 5
t
t
Err-a!
x 5
x 5
Ok!
x 0
1 1 2
1 1 2
? d d
? d d
d
amount?
x 5
Ok!
x 0
x ? 5
t
t
x 5
x 5
2 1 1 2
? ? d d
2 1 1 2
? ? d d
28
a?.b!.c?.a?.b!
Ttraces
e(6).a?.e(3).b!.e(2).c?.e(1).a?.e(3).b!
e(6).a?.e(3).b!.e(2).c?.e(1).a?.e(3).b!
29
(No Transcript)
30
Outputs
  • outM (s) U outM (s) U U outM (s)
  • outM (s) o!(d) s gt
  • U d (M ) j-quiescent(s gt)
  • outM (s) U ? (d) i-refusal(s gt)

o
r
s?S
s?S
o
o!(d)
e(Mj)
j
j
e(d)
r
i
31
1
M ltM1, M2, M3gtM1 1M2 1M3 2
  • card! ? outM (s after card?(2).d
    (1).Pin?(2).Err-P!(3))
  • outM (s after s) Ø ? s ? nttraces(s)

32
Timed multi input-output implementation relation
  • mtiocoM
  • impl ?mtioco spec iff
  • ?? outM (impl after ? ) ? outM (spec after ? )

M
33
Test
mtiocoM-sound conforming implementation not
rejected mtiocoM-complete non-conforming
implementations can be rejected
Apply recursively non-deterministically (
initially S s0 )
34
  • Future work

35
  • Confirm completeness (in the old sense)
  • Evaluate applicability in practical situations
  • Deal with the imprecision in measuring physical
    time
  • Integrate with data testing
Write a Comment
User Comments (0)
About PowerShow.com