Numerical Study of Island Wake in Deep Water - PowerPoint PPT Presentation

About This Presentation
Title:

Numerical Study of Island Wake in Deep Water

Description:

Title: Wake Formation around an Island Author: Hongchun(carrie) Zhang Last modified by: arango Created Date: 10/5/2004 6:52:34 PM Document presentation format – PowerPoint PPT presentation

Number of Views:81
Avg rating:3.0/5.0
Slides: 36
Provided by: Hongchunc
Learn more at: https://www.myroms.org
Category:

less

Transcript and Presenter's Notes

Title: Numerical Study of Island Wake in Deep Water


1
Numerical Study of Island Wakein Deep Water
  • Changming (Charles) Dong
  • James McWilliams
  • Alexander Shchepetkin
  • IGPP/UCLA, Los Angels,USA

Acknowledgements J. Molemaker, C. Zhang, M. Blass
2
  • Introduction
  • Model Configuration
  • Basic Experiment
  • Sensitivity Tests
  • Summary

3
Introduction
1. Observational and numerical evidence
2. Wake Classic Fluid Dynamics
3. Wake in geophysical fluid dynamics
4
(No Transcript)
5
(No Transcript)
6
a) no separation, laminar boundary layer b)
vortex pair with central return flow c) wake
formation with wave disturbances along the
current/wake interface d) von Karman vortex
street

(From M. Tomczak, 2000)
7
Two Categories (Tomczak,1988)
  • Shallow water
  • Wolanski (1984)
  • Signell and Geyer (1991)
  • Davies (1995)
  • Deep water
  • Heywood et al (1996)
  • Coutis and Middleton (2002)

8
Basic Experiment Rectangular Domain 180km x
80km , Water Depth 500m Island Diameter D
10km Spatial Resolution DX 500 m
(160 x 360 x20)
9
  • Boundary Condition
  • a). Upstream BC (incident flow)
  • b). Downstream BC
  • c). BC neighboring the island

10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
  • Downstream BC
  • Modified Orlanski radiation
  • (Marchesiello et al , 2001)
  • 2. Specified BC with sponge layer

Island BC Non-slippery with mask
14
(No Transcript)
15
(No Transcript)
16
(No Transcript)
17
Strouhal Number StnD/U0.207
18
(No Transcript)
19
Time Series of Lateral Boundary Layer
20
  • Sensitivity Tests
  • Reynolds number
  • Rotation
  • Island Scale
  • Vertical Shear
  • Stratification

21
  • Background Horizontal Viscosity µ
  • Grid Reynolds Number
  • RedxU/µ
  • Implicit diffusion associated with
    upstream-biased advection scheme
  • If Regt 10, scheme diffusion dominates
  • If Relt10, physical diffusion dominates

22
(No Transcript)
23
Unknown Re
Re200
Re100
Re25
Re10
24
  • Sensitivity Tests
  • 1. Reynolds Number
  • 2. Rotation
  • 3. Island Scale
  • 4. Vertical Shear
  • 5. Stratification
  • 6. Grid size

25
(No Transcript)
26
  • Sensitivity Tests
  • 1. Reynolds
  • 2. Rotation
  • 3. Island Scale
  • 4. Vertical Shear
  • 5. Stratification

27
St0.18
St 0.20
St0.23
28
  • Sensitivity Tests
  • 1. Reynolds
  • 2. Rotation
  • 3. Island Scale
  • 4. Vertical Shear
  • 5. Stratification

29
Basic Case
Weaker Shear
30
Weaker Shear
Basic Case
31
  • Sensitivity Tests
  • 1. Reynolds
  • 2. Rotation
  • 3. Island Scale
  • 4. Vertical Shear
  • 5. Stratification

32
Weaker Stratification
Basic Case
33
Weaker Stratification
Basic Case
34
(No Transcript)
35
  • Summary
  • ROMS is applied to study the ideal island wake
  • in the dynamically deep water with rotation
    and
  • stratification.
  • 2. Background eddy viscosity should be chosen
    appropriately
  • higher spatial resolution show finer
    structure of eddy
  • activities in the wake.
  • 3. Rotation, island scale, vertical shear and
    stratification
  • affect the wake structure.

The work is still in progress!
Write a Comment
User Comments (0)
About PowerShow.com