The List ADT - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

The List ADT

Description:

Title: Lecture 5 Subject: cs 253 Last modified by: neli zlatareva Created Date: 5/15/1999 1:17:50 PM Document presentation format: On-screen Show Other titles – PowerPoint PPT presentation

Number of Views:58
Avg rating:3.0/5.0
Slides: 20
Provided by: csCcsuEd4
Learn more at: https://cs.ccsu.edu
Category:
Tags: adt | list | parsing

less

Transcript and Presenter's Notes

Title: The List ADT


1
The List ADT
  • Definition A list is a collection of objects,
    called nodes, connected in a chain
  • by links. There may or may not be an ordering
    relationship between data in the
  • nodes. Depending on this, we distinguish between
    ordered and unordered
  • lists. For now, we consider only unordered
    lists.
  • Operations (methods) on lists
  • insertFirst (node) Inserts a new node at the
    beginning of the list
  • deleteFirst (node) Deletes a node from the
    beginning of the list
  • size () Returns the number
    of nodes in the list
  • empty () Returns true if the
    list is empty
  • search (key) Searches for a node with
    the specified key
  • traverse () Processes each node on
    the list (for example,
  • prints it out)

2
A linked list interface and the Node class
  • public interface LList
  • public void insertFirst (int item)
  • public Node deleteFirst ()
  • public int size()
  • public boolean empty ()
  • public boolean search (int item)
  • public void traverse ()
  • class Node
  • private int data
  • private Node next
  • public Node ()
  • this(0, null)
  • public Node (int d, Node n)
  • data d
  • next n
  • public void setData (int newData)
  • data newData
  • public void setNext (Node newNext)
  • next newNext
  • public int getData ()
  • return data
  • public Node getNext ()
  • return next
  • public void displayNode ()
  • System.out.print (data)

3
Implementation of an unordered linked list ADT
  • public Node deleteFirst ()
  • Node temp first
  • first first.getNext()
  • return temp
  • public boolean search (int key)
  • boolean result false
  • Node current first
  • while (current ! null)
  • if (current.getData () key)
  • result true
  • return result
  • else
  • current current.getNext()
  • return result
  • public void traverse ()
  • System.out.print ("Current list ")
  • class LinkListADT implements LList
  • private Node first
  • public LinkListADT ()
  • first null
  • public boolean empty ()
  • return (first null)
  • public int size ()
  • int count 0
  • Node current first
  • while (current ! null)
  • count
  • current current.getNext()
  • return count

4
Efficiency of linked list operations
  • empty, insertFirst and deleteFirst methods are
    O(1), while size, search and
  • traverse methods are O(N). The size method can be
    rewritten in a more
  • efficient, O(1), form, but the (linear) search
    and traverse methods do require
  • a loop to process each of the nodes on the list.
  • If we want to insert a node in a place different
    than the beginning of the list,
  • we must first find that place by means of the
    search method, and then insert
  • (or delete) the node. Although the actual insert
    / delete process involves
  • simply an exchange of two pointers, the overall
    efficiency of these method
  • will be O(N) because of the search involved.
  • Ordered linked lists rely on an insertN method to
    add the new node in the
  • appropriate place according to the prescribed
    ordering relationship. Therefore,
  • the insertion in an ordered linked list will also
    be O(N) operation (if linear
  • search is used).

5
The Queue ADT -- a linked list implementation
  • public interface LLQueue
  • public void enqueue (int item)
  • public int dequeue()
  • public int size()
  • public boolean empty()
  • public int front()
  • class LLQueueADT implements LLQueue
  • private int size
  • private Node front
  • private Node rear
  • public LLQueueADT ()
  • size 0
  • front null
  • rear null
  • public void enqueue (int number)
  • Node newNode new Node ()
  • newNode.setData(number)
  • newNode.setNext(null)
  • if (this.empty())
  • front newNode
  • else
  • rear.setNext(newNode)
  • rear newNode
  • size
  • public int dequeue ()
  • int i
  • i front.getData()
  • front front.getNext()
  • size--
  • if (this.empty())
  • rear null

6
The Stack ADT -- a linked list implementation
  • public interface LLStack
  • public void push (int item)
  • public int pop()
  • public int size()
  • public boolean empty()
  • public int ontop()
  • class LLStackADT implements LLStack
  • private Node top
  • private int size
  • public LLStackADT ()
  • top null
  • size 0
  • public void push (int number)
  • Node newNode new Node ()
  • newNode.setData(number)
  • newNode.setNext(top)
  • top newNode
  • size
  • public int pop ()
  • int i
  • i top.getData()
  • top top.getNext()
  • size--
  • return i
  • public int ontop ()
  • int i pop()
  • push(i)

7
Double-ended Queues
  • The double-ended queue (or dequeu) supports
    insertions and deletions at the
  • front and at the rear of the queue. Therefore, in
    addition to enqueue, dequeue
  • (which we call now insertLast and deleteFirst,
    respectively), and first
  • methods, we must also provide insertFirst,
    deleteLast and last methods.
  • The Dequeue ADT can be used for implementing both
    stacks and queues.
  • Dequeue methods Stack methods
    Queue methods
  • size()
    size() size()
  • empty() empty()
    empty()
  • last()
    ontop() --
  • first() --
    front()
  • insertFirst() --
    --
  • insertLast()
    push(item) enqueue(item)
  • deleteLast() pop()
    --
  • deleteFirst() --
    dequeue()

8
An implementation of a doubly linked list
  • Nodes in a doubly linked list have pointers to
    both, the next node and the previous
  • node. For simplicity, we can add two dummy nodes
    to the list the header node,
  • which comes before the first node, and the
    trailer node, which comes after the
  • last node.
  • The doubly linked list ADT has the following
    interface
  • public interface DLList
  • public void insertFirst (int item)
  • public void insertLast (int item)
  • public DLNode deleteFirst ()
  • public DLNode deleteLast ()
  • public int size()
  • public int last ()
  • public int first ()
  • public boolean empty ()
  • public void traverse ()

9
Implementation of a doubly linked list (cont.)
  • class DLNode
  • private int data
  • private DLNode next, prev
  • public DLNode ()
  • this(0, null, null)
  • public DLNode (int d)
  • data d
  • next null
  • prev null
  • public DLNode (int newData, DLNode newNext,
    DLNode newPrev)
  • data newData
  • next newNext
  • prev newPrev
  • public void setNext (DLNode newNext)
  • next newNext
  • public void setPrev (DLNode newPrev)
  • prev newPrev
  • public int getData ()
  • return data
  • public DLNode getNext ()
  • return next
  • public DLNode getPrev ()
  • return prev

10
Implementation of a doubly linked list (cont.)
  • class DLListADT implements DLList
  • private DLNode header
  • private DLNode trailer
  • private int size
  • public DLListADT ()
  • header new DLNode()
  • trailer new DLNode()
  • header.setNext(trailer)
  • header.setPrev(null)
  • header.setData(0)
  • trailer.setPrev(header)
  • trailer.setNext(null)
  • trailer.setData(0)
  • size 0
  • public boolean empty ()
  • return (size 0)
  • public void insertFirst (int newData)
  • DLNode oldFirst header.getNext()
  • DLNode newFirst new DLNode (newData,
    oldFirst, header)
  • oldFirst.setPrev(newFirst)
  • header.setNext(newFirst)
  • size
  • public void insertLast (int newData)
  • DLNode oldLast trailer.getPrev()
  • DLNode newLast new DLNode (newData,
    trailer, oldLast)
  • oldLast.setNext(newLast)
  • trailer.setPrev(newLast)
  • size
  • public DLNode deleteFirst ()
  • DLNode oldFirst header.getNext()
  • DLNode newFirst oldFirst.getNext()
  • newFirst.setPrev(header)
  • header.setNext(newFirst)

11
Implementation of a doubly linked list (cont.)
  • public DLNode deleteLast ()
  • DLNode oldLast trailer.getPrev()
  • DLNode newLast oldLast.getPrev()
  • trailer.setPrev(newLast)
  • newLast.setNext(trailer)
  • size--
  • return oldLast
  • public boolean search (int key)
  • boolean result false
  • DLNode current header.getNext()
  • while (current ! trailer)
  • if (current.getData () key)
  • result true
  • return result
  • else
  • current current.getNext()
  • public int last ()
  • return (trailer.getPrev().getData())
  • public int first ()
  • return (header.getNext().getData())
  • public void traverse ()
  • System.out.print ("Current list ")
  • DLNode current header.getNext()
  • while (current ! trailer)
  • current.displayDLNode ()
  • System.out.print (" ")
  • current current.getNext()
  • System.out.println ()

12
Application of stacks and queues parsing and
evaluation of arithmetic expressions
  • Parsing of an expression is a process of checking
    its syntax and representing it in
  • a form which can be uniquely interpreted.
  • Example
  • Infix forms A B / C D ? (A B) / C
    D ? ((A B) / C) D
  • Postfix form A B C / D
  • Prefix form / A B C D
  • Postfix and prefix forms are unique expression
    can be evaluated by scanning its
  • postfix form from left to right, or its prefix
    form from right to left.

13
Algorithm for converting infix expressions into
postfix form
  • Data structures needed
  • A queue containing the infix expression (call
    it infix).
  • A stack which may contain , -, , /, (,
    (call it operator stack).
  • A queue containing the final postfix expression
    (call it postfix).
  • Methods needed
  • InfixPriority, given a non-operand token,
    returns an integer associated with its priority
    according to the table below.
  • StackPriority, given a token returns integer
    associated with its priority according to the
    table below.
  • Token / -
    ( )
  • Priority 2 2 1 1
    3 0 (undefined 0
  • Value
    for the stack)

14
Algorithm for converting infix to postfix
  • Initialize operator
    stack
  • by pushing
  • Dequeue next
    token
  • from infix
  • Token is an
    operand?


  • Token right parenthesis?
  • Enqueue the Pop all entries
    remaining
  • operand on on the operator
    stack and
  • postfix queue enqueue them on
    postfix Pop entries from operator
    Pop operator stack

  • stack and
    enqueue them and enqueue on

  • on postfix
    queue until a postfix operators whose

  • matching
    left parenthesis stack priority is gt

  • is popped
    infix priority of
    the


  • token,
    except if "("

15
  • Example 1 Translate the following infix form to
    a postfix form A B (C - D / E)
  • Infix queue Operator stack
    Postfix queue
  • A
    A

  • A
  • B
    A B

  • A B
  • ( (
    A B
  • C (
    A B C
  • - - (
    A B C
  • D - (
    A B C D

16
The algorithm adapted for logical expressions
  • Same data structures needed
  • The infix queue.
  • The operator stack, which now may contain ?, ?,
    ?, ?, ?, (, .
  • The postfix queue.
  • Methods needed
  • InfixPriority, given a non-operand token,
    returns an integer associated with its priority
    according to the table below.
  • StackPriority, given a token returns integer
    associated with its priority according to the
    table below.
  • Token ? ? ? ? ?
    ( )
  • Priority 1 2 4 3
    5 6 0 (undefined 0
  • Value
    for the stack)

17
  • Example 2 Translate the following infix form to
    a postfix form (P ? Q) ? (? P ? Q)
  • Infix queue Operator stack
    Postfix queue
  • (
  • P
    ( P
  • ? ? (
    P
  • Q ? (
    P Q
  • )
    P Q ?
  • ? ?
    P Q ?
  • ( ( ?
    P Q ?
  • ? ? ( ?
    P Q ?

18
Evaluation of postfix expressions
  • The idea given the postfix expression, get a
    token and
  • If the token is an operand, push its value on the
    (value) stack.
  • If the token is an operator, pop two values from
    the stack and apply that operator to them then
    push the result back on the stack.
  • Example 1 A B C D E / -
  • Let A 5, B 3, C 6, D 8, E
    2.
  • value
    stack
  • push (5) 5
  • push (3) 5 3
  • push (pop pop) 15
  • push (6) 15 6
  • push (8) 15 6 8
  • push (2) 15 6 8 2
  • push (pop / pop) 15 6 4
  • push (pop - pop) 15 2
  • push (pop pop) 17

19
Evaluation of postfix expressions (contd.)
  • Example 2 P Q ? P ? Q ? ?
  • Let P true, Q true

  • value stack
  • push (true) true
  • push (true) true
    true
  • push (pop ? pop) true
  • push (true) true
    true
  • push (? pop) true false
  • push (true) true
    false true
  • push (pop ? pop) true true
  • push (pop ? pop) true
  • To determine if the expression is a tautology, it
    must evaluate to true for all
  • combinations of truth values of its components,
    i.e for P false and Q true
  • P true and Q false P false and Q false.
Write a Comment
User Comments (0)
About PowerShow.com