Carbon nanotubes - PowerPoint PPT Presentation

About This Presentation
Title:

Carbon nanotubes

Description:

Carbon nanotubes Stephanie Reich Fachbereich Physik, Freie Universit t Berlin Functionalization change nanotube properties solubility composite materials sensitivity ... – PowerPoint PPT presentation

Number of Views:312
Avg rating:3.0/5.0
Slides: 38
Provided by: a
Category:

less

Transcript and Presenter's Notes

Title: Carbon nanotubes


1
Carbon nanotubes
Stephanie Reich Fachbereich Physik, Freie
Universität Berlin
2
Pure sp2 sp3 carbon
1991
iron age
2004
4 cen BC
1985

3
Single-walled carbon nanotubes
diameter 1 5 nm, length up to cm
  • Nanotubes are not one, but many materials
  • Nanotubes consist only of surface atoms

4
Single-walled carbon nanotubes
  • Growth of carbon nanotubes
  • Zone folding fundamentals
  • Electronic properties
  • Optical properties
  • Nanotube vibrations
  • (Functionalization)

5
Nanotube growth
  • grow out of a carbon plasma
  • laser ablation
  • arc discharge
  • chemical vapor deposition
  • metal catalysts
  • nickel, cobalt, iron
  • carbon tubes
  • diameter 1 nm
  • length 500 nm 4 cm
  • industrial scale production
  • started 2005
  • since 2009 large scale

http//home.hanyang.ac.kr/, www.seas.upenn.edu
6
Chemical vapor deposition
  • long tubes high yield
  • high quality
  • high degree of control during growth

Hata, Science (2004) Zhang, Nat Mat (2004)
Milne
7
Nanotube growth
  • grow out of a carbon plasma
  • laser ablation
  • arc discharge
  • chemical vapor deposition
  • metal catalysts
  • nickel, cobalt, iron
  • carbon tubes
  • diameter 1 nm
  • length 500 nm 4 cm
  • industrial scale production
  • started 2005
  • since 2009 large scale

http//home.hanyang.ac.kr/, www.seas.upenn.edu
8
Nanotube structure
  • nanotube diameter d chiral angle T determine
    microscopic structure

9
Nanotube structure
  • nanotube diameter d chiral angle T determine
    microscopic structure

10
Chiral vector - (n,m) nanotube
c n a1 m a2 8 a1 8 a2
a2
a1
  • nanotube diameter d chiral angle T determine
    microscopic structure
  • specified by the chiral vector c around the
    circumference

11
Chiral vector - (10,0) nanotube
c n a1 m a2 10 a1
a2
a1
  • nanotube diameter d chiral angle T determine
    microscopic structure
  • specified by the chiral vector c around the
    circumference

12
Nanotube structure
(8,8) (6,6) (10,0) (8,3)
  • typical samples contain 40 100 different
    chiralities
  • controlling chirality during growth is impossible

13
Quantum confinement
  • circumference periodic boundary conditions
  • ? p diameter/p (p integer)

14
Confined phase space
K
?
M
15
One-dimensional Brillouin zone
16
Band structure (10,0) tube
17
Metal or semiconductor? (n-m)/3
  • quantization in (n,0)
  • n1 allowed lines between G and M
  • G K 2/3 KM 1/3
  • metals(3,0), (6,0), (9,0), (12,0)
  • semiconductors(2,0), (4,0), (5,0), (7,0)
  • general conditionmetallic if (n-m)/3 integer

(10,0) semiconductor (9,0) metal
18
Metal semiconductor in experiment
E
k
19
Concept of zone folding
  • quantization along the circumference
  • reduced phase space
  • find nanotube properties by reference to graphene
  • works for
  • electrons, phonons, and other quasi-particles
  • interactions, e.g., electron-phonon coupling
  • central concept of nanotube research

20
Graphene a semimetal
  • valence and conduction band touch in a single
    point

21
HOMO LUMO
  • HOMO LUMO are degenerate
  • Nanotube chiral vector compatible with HOMO/LUMO
    wave function?

22
Metal or not?
  • three nanotube families metal
    semiconductor small gap semiconductor la
    rge gap

23
Electronic properties of nanotubes
  • quantum confinement
  • band gap depends on structure
  • most properties depend on band gap

E
k
metal semiconductors
24
Optical properties of nanotubes
  • Every nanotube colorful
  • Bulk nanotube samples black

25
Transitions between subbands

valence
conduction
26
Chirality from luminescence
  • every (n,m) nanotube has specific pairs of
    transition energy
  • use this for assignment

27
Chirality from luminescence
?
  • luminescence detects semiconducting tubes,
    metallic not
  • some tubes were not observed

28
Nanotubes, optics excitons
  • chirality, electron-electron, and electron-hole
    interaction
  • sensitive to environment

29
Phonons in carbon nanotubes
  • 100 1000 vibrations
  • strong coupling to electronic system
  • radial-breathing mode (RBM)
  • high-energy mode (HEM)
  • D mode
  • twiston and low-energy phonons

RBM
HEM
D mode
30
Phonons in carbon nanotubes
  • 100 1000 vibrations
  • strong coupling to electronic system
  • radial-breathing mode (RBM)
  • high-energy mode (HEM)
  • D mode
  • twiston and low-energy phonons
  • characterizie nanotubes
  • presence
  • metallic/semiconductor
  • chirality

RBM
HEM
RBM
HEM
D mode
D mode
31
Electron-phonon coupling
  • doping hardens phonon frequencies
  • metallic into semiconducting spectrum?
  • bundling effect?

semiconducting
metallic
32
Phonon softening
  • vibration periodically opens and closes a band
    gap
  • softening of the phonon frequencies
  • phonon dispersion is singular
  • q k1 k2

33
Phonons limit nanotube transport
  • ballistic transport
  • resistance approaches quantum limit 13kO/channel
  • no scattering by defects
  • ballistic transport breaks down by hot phonons
  • phonon emission faster than decay

34
Functionalization
  • change nanotube properties
  • solubility
  • composite materials
  • sensitivity reactivity
  • tune pristine properties
  • electron interaction
  • defects
  • vibrations

35
Quintessential nanotubes
  • Many different nanotube structures
  • Porperties differ vastly
  • Essential ingredients
  • Quantum confinement pick properties
  • Large surface area manipulate properties
  • sp2 carbon bond ultra-strong material
  • We cannot control the type of tube

36
Summary
  • Nanotube properties depend on their
    structurethere is no typical nanotube
  • Growth of carbon nanotubes produces many
    different tubes different materials
  • Nanotube absorb light show infrared
    luminescence
  • Particularly strong electron-phonon coupling
  • Functionalize nanotubes for further tailoring

37
Thanks to
  • TU BerlinChristian ThomsenJanina Maultzsch
  • MITMichael StranoFrancesco StellacchiJing Kong
  • KITFrank Hennrich
  • University of CambridgeStefan HofmannJohn
    Robertson
  • Cinzia Casiraghi (AvH)Antonio Setaro
    (FUB)Vitalyi Datsyuk (BmBF)
  • Rohit Narula (FUB) Sebastian Heeg (ERC)Oliver
    Schimek (DFG)Asaf Avnon (SfB)Thomas Straßburg
    (BmBF)Stefan Arndt (BmBF)
  • Ermin Malic (SfB)Megan Brewster (MIT, NSF)

38
The end
  • Thank you!
Write a Comment
User Comments (0)
About PowerShow.com