Dynamic Programming - PowerPoint PPT Presentation

About This Presentation
Title:

Dynamic Programming

Description:

Title: Author: Ho, C.W. Last modified by: sc Created Date: 4/9/1996 6:43:02 AM Document presentation format: Letter (8.5x11 ) – PowerPoint PPT presentation

Number of Views:55
Avg rating:3.0/5.0
Slides: 40
Provided by: HoCW
Category:

less

Transcript and Presenter's Notes

Title: Dynamic Programming


1
  • Dynamic Programming

?? ???? ????????????
2
Dynamic Programming
  • ? divide-and-conquer ???, ????????????.
  • ? divide-and-conquer????????????????, ?????.

3
?????? (Rod cutting problem)
??????N(??)?????, ?i??????,??pi?????i??????????.
???????????????????
?
?? i 1 2 3 4 5 6 7 8 9 10
??pi 1 5 8 9 10 17 17 20 24 30
N7, 734???17 716223 ???18.
4
?????? (Rod cutting problem)
  • ??????????????k?,?
  • Ni1i2ik
  • rNpi1pik ----???
  • rN max i1..n pirN-i,
  • r00.
  • CUT-ROD(p, n)
  • if n0 return 0
  • q-99999999
  • for i1 to n
  • q max(q, piCUT-ROD(p, n - i))
  • return q

5
?????? (Rod cutting problem)
  • Memoized-CUT-ROD(p, n)
  • let r0,..n be a new array
  • for i0 to n
  • ri -9999999
  • return Memoized-CUT-ROD-AUX(p, n, r)

Time O(n2), why?
  • Memoized-CUT-ROD-AUX(p, n, r)
  • if rngt0 return rn
  • if n0 q0
  • else q-9999999
  • for i0 to n
  • q max(q, piMemoized-CUT-ROD-AUX(p,
    n-i, r))
  • rn q
  • return q

6
  • BOTTOM-UP-CUT-ROD(p, n)
  • let r0,..n be a new array
  • r00
  • for j1 to n
  • q-9999999
  • for i 1 to j
  • qmax(q, pi rj-i)
  • rjq
  • return rn
  • EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
  • let r0,..n and s0..n be a new arrays
  • r00
  • for j1 to n
  • q-9999999
  • for i 1 to j
  • if q lt pi rj-i)
  • q pi rj-i)
  • sji
  • rjq
  • return r and s
  • PRINT-CUT-ROD-SOLUTION(p, n)
  • (r, s) EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
  • while n gt 0
  • print sn nn - sn

?? i 1 2 3 4 5 6 7 8 9 10
??pi 1 5 8 9 10 17 17 20 24 30
ri 1 5 8 10 13 17 18 22 25 30
si 1 2 3 2 2 6 1 2 3 10
7
Crazy eights puzzle
  • Given a sequence of cards c0, c1,,cn-1,
    e.g. 7H, 6H, 7D, 3D, 8C, JS,..
  • Find the longest subsequence ci1, ci2,,
    cik, (i1lt i2ltlt ik), where cij and cij1
    have the same suit or rank or one has rank 8.--
    match
  • Let Ti be the length of the longest subsequence
  • starting at ci.
  • Ti 1 max Tj ci and cj have a match
    and j gtn
  • Optimal solution max Ti.

8
?????? (??)
??????? ?A1, A2, , An?, ???? Ai ???? pi?1? pi,
???? A1A2An ?????, ???? scalar ?????????.
9
??????(?)
(A1(A2(A3A4)))? A1?(A2A3A4) ? A2?(A3A4) ? A3?A4
cost 13534 58934
89334 2210 15130
9078 26418
(A1(A2(A3A4))), costs 26418 (A1((A2A3)A4)),
costs 4055 ((A1A2 )( A3A4)), costs 54201
((A1(A2 A3))A4), costs 2856 ((( A1A2)A3)A4),
costs 10582
A1 ? A2 ? A3 ? A4 13 5 89 3 34
10
Catalan Number
For any n, ways to fully parenthesize the
product of a chain of n1 matrices binary
trees with n nodes. permutations generated
from 1 2 n through a stack. n pairs of
fully matched parentheses. n-th Catalan Number
C(2n, n)/(n 1) ?(4n/n3/2)
11
???
A1 ? A2 ? A3 ? A4
(A1(A2(A3A4))) (A1((A2A3)A4)) ((A1A2 )(
A3A4)) ((A1(A2 A3))A4) ((( A1A2)A3)A4)
12
??????(??1)
  • If T is an optimal solution for A1, A2, , An

T
k
T2
T1
1, , k
k1, , n
  • then, T1 (resp. T2) is an optimal solution for
    A1, A2, , Ak (resp. Ak1, Ak2, , An).

13
?????? (??2)
  • Let mi, j be the minmum number of scalar
    multiplications needed to compute the product
    AiAj , for 1 ? i ? j ? n.
  • If the optimal solution splits the product AiAj
    (AiAk)?(Ak1Aj), for some k, i ? k lt j, then
  • mi, j mi, k mk1, j pi?1 pk pj .
    Hence, we have

mi, j mini ? k lt jmi, k mk1, j pi?1
pk pj 0 if i j
14
ltP0, P1,, Pngt
  • MATRIX-CHAIN-ORDER(P)
  • n p.length -1
  • let m1..n, 1..n and s1..n-1, 2..n be new
    tables
  • for i 1 to n mi, i0
  • for l 2 to n
  • for i 1 to n l 1
  • ji l- 1
  • mi, j ?
  • for k i to j-1
  • q mi, k mk1, j Pi-1PkPj
  • if qltmi, j
  • mi, j q si, j k
  • return m and s
  • Time O(n3)

15
(No Transcript)
16
?????? (??)
  • Consider an example with sequence of dimensions
    lt5,2,3,4,6,7,8gt

mi, j mini ? k lt jmi, k mk1, j pi?1
pk pj
1 2 3 4 5 6 1 0 30 64 132 226 348
2 0 24 72 156 268 3 0
72 198 366 4 0 168 392 5
0 336 6 0
17
  • Constructing an optimal solution
  • Each entry si, jk records that the optimal
    parenthesization of AiAi1Aj splits the product
    between Ak and Ak1
  • Ai..j?(A i..si..j )(A si..j1..j)

18
?????? (??)
mi, j mini ? k lt jmi, k mk1, j pi?1
pk pj si, j a value of k that gives the
minimum
s 1 2 3 4 5 6 1 1 1 1 1 1 2 2 3 4 5
3 3 4 5 4 4 5 5
5
1,6
A1(((( A2A3)A4)A5) A6)
19
?????? (??)
mi, j mini ? k lt jmi, k mk1, j pi?1
pk pj
  • To fill the entry mi, j, it needs ?(j?i)
    operations. Hence the execution time of the
    algorithm is

Time ?(n3) Space ?(n2)
20
  • MEMOIZED-MATRIX-CHAIN(P)
  • n p.length -1
  • let m1..n, 1..n be a new table
  • for i 1 to n
  • for j i to n
  • mi, j ?
  • return LOOKUP-CHAIN(m, p, 1, n)

ltP0, P1,, Pngt
  • Lookup-Chain(m, P, i, j)
  • if mi, j lt ? return mi, j
  • if ij mi, j 0
  • else for ki to j-1
  • q Lookup-Chain(m, P, i, k)
  • Lookup-Chain(m, P, k1,
    j) Pi-1PkPj
  • if q lt mi, j mi, j q
  • return mi, j time O(n3) space
    ?(n2)

21
??? DP ??????
  1. Characterize the structure of an optimal
    solution.
  2. Derive a recursive formula for computing the
    values of optimal solutions.
  3. Compute the value of an optimal solution in a
    bottom-up fashion (top-down is also applicable).
  4. Construct an optimal solution in a top-down
    fashion.

22
Elements of Dynamic Programming
  • Optimal substructure (a problem exhibits optimal
    substructure if an optimal solution to the
    problem contains within it optimal solutions to
    subproblems)
  • Overlapping subproblems
  • Reconstructing an optimal solution
  • Memoization

23
  • Given a directed graph G(V, E) and vertices u, v
    ?V
  • Unweighted shortest path Find a path from u to v
    consisting the fewest edges. Such a path must be
    simple (no cycle).
  • Optimal substructure? YES.
  • Unweighted longest simple path Find a simple
    path from u to v consisting the most edges.
  • Optimal substructure? NO.
  • q ? r ? t is longest but q ? r
  • is not the longest between q and r.

w
v
u
q
r
s
t
24
Printing neatly ??
  • Given a sequence of n words of lengths l1,
    l2,,ln, measured in characters, want to
    print it neatly on a number of lines, of which
    each has at most M characters. .
  • If a line has words i through j, iltj, and there
    is exactly one space between words, the cube of
    number of extra space characters at the end of
    the line is
  • Bi, j (M j i - (lili1lj))3.
  • Want to minimize the sum over all lines (except
    the last line) of the cubes of the number of
    extra space at the ends of lines.
  • Let ci denote the minimum cost for printing
    words i through n.
  • ci min iltjltip (cj1 Bi,j), where p is
    the maximum number of words starting from i-th
    word that can be fitted into a line.

25
Longest Common Subsequence (??)
Given two sequences X ltx1, x2, , xmgt and Y
lty1, y2, , yngt find a maximum-length common
subsequence of X and Y.
?1Input ABCBDAB BDCABA C.S.s
AB, ABA, BCB, BCAB, BCBA Longest BCAB, BCBA,
Length 4
? 2 vintner writers
26
Step 1 Characterize longest common subsequence
  • Let Z lt z1, z2, , zkgt be a LCS of X ltx1,
    x2, , xmgt and Y lty1, y2, , yngt.
  • If xm yn, then zk xm yn and ltz1, z2, ,
    zk?1gt is a LCS of ltx1, x2, , xm?1gt and lty1, y2,
    , yn?1gt.
  • If zk ? xm, then Z is a LCS of ltx1, x2, , xm?1gt
    and Y.
  • If zk ? yn, then Z is a LCS of X and lty1, y2, ,
    yn?1gt.

27
Step 2 A recursive solution
  • Let Ci, j be the length of an LCS of the
    prefixes Xi ltx1, x2, , xigt and Yj lty1, y2,
    , yjgt, for 1 ? i ? m and 1 ? j ? n. We have

Ci, j 0 if i 0, or j 0 Ci?1, j?1
1 if i , j gt 0 and xi yj max(Ci, j?1,
Ci?1, j) if i , j gt 0 and xi ? yj
28
Step 3 Computing the length of an LCS
  • LCS-Length(X,Y)
  • m X.length
  • n Y.length
  • let b1..m, 1..n and c0..m, 0..n be new
    tables
  • for i 1 to m ci, 0 0
  • for j 1 to n do c0, j 0
  • for i 1 to m do
  • for j 1 to n do
  • if xi yj
  • ci,j ci-1,j-11 bi,j ?
  • else if ci-1, j ? ci, j-1
  • ci, j ci-1, j bi, j ?
  • else ci, j ci, j-1 bi, j
    ?
  • return b, c

29
Step 4 Constructing an LCS
  • Print-LCS(b, X, i, j)
  • if i0 or j0 return
  • if bi,j ?
  • Print-LCS(b, X, i-1, j-1)
  • print xi
  • else if bi,j ?
  • Print-LCS(b, X, i-1, j)
  • else Print-LCS(b, X, i, j-1)

30
Longest Common Subsequence (???)
Ci, j 0 if i 0, or j 0 Ci?1, j?1
1 if i , j gt 0 and xi yj max(Ci, j?1,
Ci?1, j) if i , j gt 0 and xi ? yj
???LCS BCBA
31
Optimal Polygon Triangulation
v0
v6
v1
v5
v2
v3
v4
Find a triangulation s.t. the sum of the weights
of the triangles in the triangulation is
minimized.
32
Optimal Polygon Triangulation (??1)
  • If T is an optimal solution for ?v0, v1, , vn?
  • then, T1 (resp. T2) is an optimal solution for
    ?v0, v1, , vk? (resp. ?vk, vk1, , vn?), 1 ?
    k lt n.

33
Optimal Polygon Triangulation (??2)
  • Let ti, j be the weight of an optimal
    triangulation of the polygon ?vi?1, vi,, vj?,
    for 1 ? i lt j ? n.
  • If the triangulation splits the polygon into
    ?vi?1, vi,, vk? and ?vk, vk1, ,vn? for some
    k, then
  • ti, j ti, k tk1, j w(?vi?1 vk vj)
    . Hence, we have

ti, j mini ? k lt jti, k tk1, j
w(?vi?1 vk vj) 0 if i j
34
Optimal binary search trees
  • k(k1,k2,,kn) of n distinct keys in sorted order
    (k1ltk2ltlt kn)
  • Each key ki has a probability pi that a search
    will be for ki
  • Some searches may fail, so we also have n1 dummy
    keys d0,d1,,dn, where d0ltk1, knltdn and
    kiltdiltki1 for i1,,n-1.
  • For each dummy key di, we have a probability qi
    that a search will correspond to di .

35
Optimal binary search trees??
i 0 1 2 3 4 5
pi 0.15 0.1 0.05 0.1 0.2
qi 0.05 0.1 0.05 0.05 0.05 0.1
Expected search cost 2.8
36
  • Goal Given a set of probabilities, want to
    construct a binary search tree whose expected
    search cost is smallest .
  • Step 1 The structure of an optimal BST.
  • Consider any subtree of a BST, which must
    contain contiguous keys ki,,kj for some 1?i?j?n
    and must also have as its leaves the dummy keys
    di-1,,dj .
  • Optimal-BST has the property of optimal
    substructure.

37
  • Step 2 A recursive solution
  • Find an optimal BST for the keys ki,,kj, where
    j?i-1, i?1, j?n. (When ji-1, there is no actual
    key, but di-1)
  • Define ei,j as the expected cost of searching
    an optimal BST containing ki,,kj. Want to find
    e1,n.
  • For dummy key di-1, ei,i-1qi-1 .
  • For j?i, need to select a root kr among ki,,kj .
  • For a subtree with keys ki,,kj, denote

38
  • ei,jpr(ei,r-1w(i,r-1))(er1,jw(r1,j))
  • ei,r-1er1,jw(i,j)
  • Thus
  • ei,j
  • Step 3 Computing the expected search cost of an
    optimal BST
  • Use a table w1..n1,0..n for w(i,j)s .
  • wi,i-1qi-1
  • wi,jwi,j-1pjqj

39
  • OPTIMAL-BST(p,q,n)
  • let e1..n1, 0..n, w1..n1, 0..n and
    root1..n, 1..n be new tables
  • for i1 to n1
  • ei,i-1qi-1
  • wi,i-1qi-1
  • for l1 to n
  • for i1 to n-l1
  • jil-1
  • ei,j?
  • wi,jwi,j-1pjqj
  • for r i to j
  • tei, r-1er1, j wi,
    j
  • if t lt ei,j
  • ei,jt
  • rooti,j r
  • return e and root

  • ?(n3)
Write a Comment
User Comments (0)
About PowerShow.com