Title: ACID-BASE SITUATIONS
1ACID-BASE SITUATIONS
2Objectives
- After todays presentation you will
- List the primary causes of respiratory acidosis
- List the primary causes of respiratory alkalosis
- Given a set of electrolytes, determine the anion
gap - List the primary causes of a metabolic acidosis
with an increased anion gap - List the primary causes of a metabolic acidosis
with a normal anion gap - List the primary causes of a metabolic alkalosis
3ACID-BASE DISTURBANCES
4Respiratory Disturbances
5(No Transcript)
6(No Transcript)
7(No Transcript)
8Metabolic Disturbances
9Metabolic Acidosis
10General Causes of Metabolic Acidosis
- Failure of kidneys to excrete metabolic acids
normally found in the body. - Formation of excess quantities of metabolic acids
in the body. - Addition of metabolic acids to the body by
ingestion or infusion of acids. - Loss of base from the body fluids.
11Anion Gap
- Two ways to evaluate
- Na - Cl- - HCO3-
- Normal is 6 to 12 mEq/L
- Na K - Cl- - HCO3-
- Normal is 10 to 16
12Anion Gap
- http//www.thedrugmonitor.com/acidbase.html
13Increased Anion Gap
- Greater than 20 Accumulation of Fixed Acids
- NORMAL CHLORIDE LEVEL
- MUD PILERS
- Methanol
- Uremia (Azotemic Renal Failure)
- Elevated BUN/Creatinine
- Diabetic Ketoacidosis
- Paraldehyde (Formaldehyde and Toluene)
- Isopropyl alcohol
- Lactic (and Formic) Acidosis
- Ethylene Glycol
- Rhabdomyolysis
- Salicylates
14(No Transcript)
15Normal Anion Gap
- INCREASED CHLORIDE LEVEL LOSS OF BASE
- Renal Tubular Acidosis
- No reabsorption of HCO3-
- Enteric Drainage Tubes
- Small intestine drainage Large amounts of base
in stool - Diarrhea
- Urinary Diversion
- Surgical alteration of ureters
- Carbonic Anhydrase Inhibitors
- Poor reabsorption of bicarbonate
16Low Anion Gap
- Look at albumin
- Hypoalbuminemia causes a low anion gap.
- Normal Albumin is 4.4 g/dL
- For every 0.4 g/dL decrease in albumin, the anion
gap will decrease by 1 mEq/L
Albumin (g/dL) Maximum Anion Gap (mEq/L)
4.4 16
4.0 15
3.6 14
3.2 13
2.8 12
17(No Transcript)
18Example of Extreme Compensation
- On 2 L/min NC
- pH 6.96
- PaCO2 6.8 mm Hg
- PaO2 158 mm Hg
- HCO3- 1.5 mEq/L
- BE -32.6 mEq/L
19Metabolic Alkalosis
- Most common acid-base abnormality?
- Aggressive treatment of partially compensated
respiratory acidosis? - Causes
- Loss of Acid
- Vomiting
- NG Drainage
- Gain of Alkali
- Increased ingestion of alkaline substances
- Excessive licorice ingestion
- Hypokalemia
20(No Transcript)
21Advance Acid Base Interpretation
22Classification vs. Interpretation
- Classification Identification of acid-base
disturbance and the causative element along with
any compensation that may be present. - Interpretation Use of calculations to determine
if compensation is appropriate or if multiple
disorders are present.
23Compensation
- There is no such thing as overcompensation.
- This usually means there is a second primary
disorder at work in the opposite direction. - If there is no compensation OR the compensation
is less than expected - Compensation is not possible because the
compensatory organ is not functioning
appropriately. - There has not been sufficient time for
compensation (renal). - Another primary disorder is present and is
working in the same direction.
24PaCO2 pH HCO3-
RESPIRATORY ACIDOSIS RESPIRATORY ACIDOSIS RESPIRATORY ACIDOSIS RESPIRATORY ACIDOSIS
Acute ?10 ? 0.08 ? 1 mEq/L
Chronic ?10 ? 0.03 ? 4 mEq/L
RESPIRATORY ALKALOSIS RESPIRATORY ALKALOSIS RESPIRATORY ALKALOSIS RESPIRATORY ALKALOSIS
Acute ?10 ? 0.08 ? 2 mEq/L
Chronic ?10 ? 0.03 ? 5 mEq/L
HCO3- pH PaCO2
METABOLIC ACIDOSIS ? 1 ? 0.015 ? 1.2
METABOLIC ALKALOSIS ?1 ?0.015 ? 0.7
25Degree of Variation
- Allow for some degree of variation as follows
- pH 0.03
- PaCO2 5 mm Hg
26Oakes Approach
- Primary Problem (Acidemia or Alkalemia)
- Primary Cause
- CO2
- HCO3-
- Compensation
- Initial Classification (Technical and Functional)
- Determine extent of compensation and the presence
of other abnormalities - Determine Anion Gap for metabolic acidemia
- Determine Oxygenation
- Assess Patient
- Check for Accuracy
- Final Interpretation
27Factors That May Complicate Acid-Base
Determination
- Chronic Lung Disease
- Chronic Renal Disease
- Therapeutic interventions
- Mixed Acid-Base Problems
28COPD
- Typical picture is fully compensated, respiratory
acidosis. - pH 7.38
- PaCO2 55 mm Hg
- HCO3- 31 mEq/L
- BE 5 mEq/L
- PaO2 55 mm Hg
- Lets go through the process.
297.38, 55, 31
- Acidosis
- CO2 is elevated, so there is a respiratory
cause. - HCO3- is out of normal range, but is not the
cause. - The body is compensating.
- Technical Classification Fully compensated
respiratory acidosis. - Functional Classification Chronic respiratory
acidosis.
307.38, 55, 31
- Change in CO2 15 torr
- Change in pH -0.02
- Change in HCO3- 7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 55
HCO3- 24 mEq/L
317.38, 55, 31
For every 10 torr change in PaCO2 there is a
0.03 change in pH. pH D (1.5 x
.03)0.045 7.40-0.0457.36
- Change in CO2 15 torr
- Change in pH -0.02
- Change in HCO3- 7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 55
HCO3- 24 mEq/L
327.38, 55, 31
For every 10 torr change in PaCO2 there is a
0.03 change in pH. pH D (1.5 x
.03)0.045 7.40-0.0457.36
- Change in CO2 15 torr
- Change in pH -0.02
- Change in HCO3- 7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36
PaCO2 40 torr 55
HCO3- 24 mEq/L
337.38, 55, 31
For every 10 torr change in PaCO2 there is a 4
mEq/L change in HCO3-. HCO3- D (1.5 x
4)6 24630 mEq/L
- Change in CO2 15 torr
- Change in pH -0.02
- Change in HCO3- 7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36
PaCO2 40 torr 55
HCO3- 24 mEq/L
347.38, 55, 31
For every 10 torr change in PaCO2 there is a 4
mEq/L change in HCO3-. HCO3- D (1.5 x
4)6 24630 mEq/L
- Change in CO2 15 torr
- Change in pH -0.02
- Change in HCO3- 7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36
PaCO2 40 torr 55
HCO3- 24 mEq/L 30
357.38, 55, 31
Actual HCO3- (31) doesnt match the predicted
change in HCO3-, so there must be an underlying
metabolic alkalosis superimposed on the
compensation.
- Change in CO2 15 torr
- Change in pH -0.02
- Change in HCO3- 7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36
PaCO2 40 torr 55
HCO3- 24 mEq/L 30 31
367.38, 55, 31
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (1 x .015)
0.150.2 7.36 0.2 7.38
- Change in CO2 15 torr
- Change in pH -0.02
- Change in HCO3- 7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36
PaCO2 40 torr 55
HCO3- 24 mEq/L 30 31
377.38, 55, 31
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (1 x .015)
0.150.2 7.36 0.2 7.38
- Change in CO2 15 torr
- Change in pH -0.02
- Change in HCO3- 7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36 7.38
PaCO2 40 torr 55
HCO3- 24 mEq/L 30 31
387.38, 55, 31
- Change in CO2 15 torr
- Change in pH -0.02
- Change in HCO3- 7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.36 7.38
PaCO2 40 torr 55
HCO3- 24 mEq/L 30 31
39COPD
- So our final interpretation is a fully
compensated, respiratory acidosis with a
secondary metabolic alkalemia. - pH 7.38
- PaCO2 55 mm Hg
- HCO3- 31 mEq/L
- BE 5 mEq/L
- PaO2 55 mm Hg
- This may be due to hypochloremia and hypokalemia
associated with steroids and diuretics.
40COPD Relative Hyperventilation
- If the patient below develops a hypoxemic episode
(e.g. pneumonia), the resulting hypoxemia may
cause the patient to hyperventilate, the PaCO2 to
return to normal, and a metabolic alkalosis to
be diagnosed. - This is often seen when first starting the
patient on BiPAP or mechanical ventilation
pH 7.38 PaCO2 55 mm Hg HCO3- 31 mEq/L BE 5
mEq/L PaO2 55 mm Hg
pH 7.52 PaCO2 40 mm Hg HCO3- 31 mEq/L BE 5
mEq/L PaO2 50 mm Hg
Solution is to only correct the PaCO2 to 52 mm Hg
41COPD with Lactic Acidosis
- COPD Reduced Cardiac Output Cellular hypoxia
and Lactic Acidosis - Dont be fooled by normal ABGs
pH 7.38 PaCO2 40 mm Hg HCO3- 24 mEq/L BE 1
mEq/L PaO2 44 mm Hg
pH 7.38 PaCO2 55 mm Hg HCO3- 31 mEq/L BE 5
mEq/L PaO2 55 mm Hg
Loss of HCO3- due to lactic acidosis.
42Chronic Renal Failure
- Chronic renal failure can distort ABG results.
- Renal ability to manipulate HCO3-, electrolyte
and fluid levels is impaired. - Always evaluate with a metabolic acidosis as a
possible cause.
43Therapeutic Interventions
- Multiple therapeutic interventions can affect
acid-base balance - Diuretics
- Steroids
- Electrolytes
- Oxygen
- Sodium Bicarbonate
- Mechanical Ventilation
44Lets try another
- Interpret this ABG
- pH 7.44
- PaCO2 18 mm Hg
- BE -12 mEq/L
- HCO3- 12 mEq/L
- PaO2 64 mm Hg
457.44, 18, 12
- Normal, but on alkalotic side.
- CO2 is reduced, so there is a respiratory cause.
- HCO3- is out of normal range, but is not the
cause as a lowered HCO3- would not cause an
alkalosis. - The body is compensating.
- Technical Classification Fully compensated
respiratory alkalosis. - Functional Classification Chronic respiratory
alkalosis.
467.44, 18, 12
- Change in CO2 -22 torr
- Change in pH 0.04
- Change in HCO3- -12 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 18
HCO3- 24 mEq/L
477.44, 18, 12
For every 10 torr change in PaCO2 there is a
0.03 change in pH. pH D (2.2 x
.03)0.066 7.400.0667.47
- Change in CO2 -22 torr
- Change in pH 0.04
- Change in HCO3- -12 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 18
HCO3- 24 mEq/L
487.44, 18, 12
For every 10 torr change in PaCO2 there is a
0.03 change in pH. pH D (2.2 x
.03)0.066 7.400.0667.47
- Change in CO2 -22 torr
- Change in pH 0.04
- Change in HCO3- -12 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47
PaCO2 40 torr 18
HCO3- 24 mEq/L
497.44, 18, 12
For every 10 torr change in PaCO2 there is a 5
mEq/L change in HCO3-. HCO3- D (2.2 x
5)11 24-1113 mEq/L
- Change in CO2 -22 torr
- Change in pH 0.04
- Change in HCO3- -12 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47
PaCO2 40 torr 18
HCO3- 24 mEq/L
507.44, 18, 12
For every 10 torr change in PaCO2 there is a 5
mEq/L change in HCO3-. HCO3- D (2.2 x
5)11 24-1113 mEq/L
- Change in CO2 -22 torr
- Change in pH0.04
- Change in HCO3- -12 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47
PaCO2 40 torr 18
HCO3- 24 mEq/L 13
517.44, 18, 12
Actual HCO3- (12) doesnt match the predicted
change in HCO3-, so there must be an underlying
metabolic acidosis superimposed on the
compensation.
- Change in CO2 -22 torr
- Change in pH 0.04
- Change in HCO3- -12 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47
PaCO2 40 torr 18
HCO3- 24 mEq/L 13 12
527.44, 18, 12
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (1 x .015)
0.150.2 7.47 - 0.2 7.45
- Change in CO2 -22 torr
- Change in pH 0.04
- Change in HCO3- -12 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47
PaCO2 40 torr 18
HCO3- 24 mEq/L 13 12
537.44, 18, 12
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (1 x .015)
0.150.2 7.47 - 0.2 7.45
- Change in CO2 -22 torr
- Change in pH 0.04
- Change in HCO3- -12 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47 7.45
PaCO2 40 torr 18
HCO3- 24 mEq/L 13 12
547.44, 18, 12
The predicted pH of 7.45 is within the degree of
variation of 0.03 for pH.
- Change in CO2 -22 torr
- Change in pH 0.04
- Change in HCO3- -12 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.47 7.45
PaCO2 40 torr 18
HCO3- 24 mEq/L 13 12
55Interpretation
- Fully compensated respiratory alkalosis with
simultaneous metabolic acidosis.
56Mixed Acid-Base Disturbances
- Sometimes a simple compensatory mechanism isnt
the reason for the normalized acid-base status. - If two opposing problems co-exist (ARF causing
metabolic acidosis and pain causing respiratory
alkalosis), you may have what looks like one
compensating for the other.
57- Interpret this ABG
- pH 7.38
- PaCO2 20 mm Hg
- HCO3- 17 mEq/L
- PaO2 89 mm Hg
587.38, 20, 17
- Normal, but on acidotic side.
- CO2 is reduced, which would not cause an
alkalosis. - HCO3- is reduced and would cause an alkalosis.
- The body is compensating.
- Technical Classification Fully compensated
metabolic acidosis. - Functional Classification Metabolic acidosis.
597.38, 20, 17
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (7 x
.015)0.105 7.40-0..1057.30
- Change in CO2 -20 torr
- Change in pH -0.02
- Change in HCO3- -7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr
HCO3- 24 mEq/L 17
607.38, 20, 17
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (7 x
.015)0.105 7.40-0.1057.30
- Change in CO2 -20 torr
- Change in pH -0.02
- Change in HCO3- -7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr
HCO3- 24 mEq/L 17
617.38, 20, 17
The calculated change in pH (7.30) differs from
the actual measured pH, so there must be some
additional acid-base disturbance.
- Change in CO2 -20 torr
- Change in pH -0.02
- Change in HCO3- -7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr
HCO3- 24 mEq/L 17
627.38, 20, 17
For every 1 mEq/L change in HCO3- there is a 1.2
change in PaCO2. PaCO2 D (7 x
1.2)8.4 40-8.431.632
- Change in CO2 -20 torr
- Change in pH -0.02
- Change in HCO3- -7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr
HCO3- 24 mEq/L 17
637.38, 20, 17
The calculated change in PaCO2 (32) differs from
the actual measured PaCO2, so there must be a
respiratory disturbance present.
- Change in CO2 -20 torr
- Change in pH -0.02
- Change in HCO3- -7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr 32
HCO3- 24 mEq/L 17
647.38, 20, 17
The difference between the calculated change in
PaCO2 (32) and the actual PaCO2 (20), indicates
that there must be a respiratory disturbance
present.
- Change in CO2 -20 torr
- Change in pH -0.02
- Change in HCO3- -7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr 31.6 20
HCO3- 24 mEq/L 17
657.38, 20, 17
For every 10 torr change in PaCO2 there is a 0.08
change in pH. pH D (1.2 x .08)0.096 7.30.0967
.396
- Change in CO2 -20 torr
- Change in pH -0.02
- Change in HCO3- -7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30
PaCO2 40 torr 31.6 20
HCO3- 24 mEq/L 17
667.38, 20, 17
The predicted pH is within the level of
variability of 0.03 units.
- Change in CO2 -20 torr
- Change in pH -0.02
- Change in HCO3- -7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.30 7.40
PaCO2 40 torr 31.6 20
HCO3- 24 mEq/L 17
67Interpretation
- Mixed metabolic acidosis and simultaneous
respiratory alkalosis.
68Can you have a triple disorder?
69Anion Bicarbonate Gaps
- Anion Gap Na - Cl- - HCO3-
- Normal value is 6 to 12
- Above 20 considered High
- Bicarbonate Gap HCO3- (AG-12)
- Normal is 20 to 28 AG Metabolic Acidosis
- Less than 20 AG Metabolic Acidosis Non-AG
Metabolic Acidosis - Greater than 28 AG Metabolic Acidosis
Metabolic Alkalosis
707.52, 30, 21
- Alkalemia.
- CO2 is reduced, which would cause an alkalosis.
Primary respiratory alkalosis. - HCO3- is reduced and would not cause an
alkalosis. - The body is compensating (HCO3- decreasing)
- Technical Classification Partially compensated
respiratory alkalosis. - Functional Classification Chronic respiratory
alkalosis.
717.52, 30, 21
For every 10 torr change in PaCO2 there is a 0.03
change in pH. pH D (1 x .03)0.03 7.40.037.43
- Change in CO2 -10 torr
- Change in pH 0.12
- Change in HCO3- -3 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 30
HCO3- 24 mEq/L
727.52, 30, 21
For every 10 torr change in PaCO2 there is a 0.03
change in pH. pH D (1 x .03)0.03 7.40.037.43
- Change in CO2 -10 torr
- Change in pH 0.12
- Change in HCO3- -3 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L
737.52, 30, 21
The calculated change in pH (7.43) differs from
the actual measured pH, so there must be some
additional acid-base disturbance.
- Change in CO2 -10 torr
- Change in pH 0.12
- Change in HCO3- -3 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L
747.52, 30, 21
For every 10 torr change in PaCO2 there is a 5
mEq/L change in HCO3-. HCO3- D (1 x
5)5 24-519 mEq/L
- Change in CO2 -10 torr
- Change in pH 0.12
- Change in HCO3- -3 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L
757.52, 30, 21
For every 10 torr change in PaCO2 there is a 5
mEq/L change in HCO3-. HCO3- D (1 x
5)5 24-519 mEq/L
- Change in CO2 -10 torr
- Change in pH 0.12
- Change in HCO3- -3 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L 19
767.52, 30, 21
The calculated change in HCO3-differs from the
actual measured HCO3-, so there must be some
additional acid-base disturbance.
- Change in CO2 -10 torr
- Change in pH 0.12
- Change in HCO3- -3 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L 19 21
777.52, 30, 21
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (2 x
.015)0.03 7.430.037.46
- Change in CO2 -10 torr
- Change in pH 0.12
- Change in HCO3- -3 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43
PaCO2 40 torr 30
HCO3- 24 mEq/L 19 21
787.52, 30, 21
For every 1 mEq/L change in HCO3- there is a
0.015 change in pH. pH D (2 x
.015)0.03 7.430.037.46
- Change in CO2 -10 torr
- Change in pH 0.12
- Change in HCO3- -3 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43 7.46
PaCO2 40 torr 30
HCO3- 24 mEq/L 19 21
797.52, 30, 21
Note that the pH still is not fully explained by
the change in bicarbonate due to compensation.
Some additional metabolic alkalosis must be
present.
- Change in CO2 -10 torr
- Change in pH 0.12
- Change in HCO3- -3 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40 7.43 7.46
PaCO2 40 torr 30
HCO3- 24 mEq/L 19 21
80Look to Anion Bicarbonate Gaps
- Na 142 mEq/L
- Cl- 98 mEq/L
- AG Na - Cl- - HCO3- 142-98-21 23
- This means we have an Anion Gap Metabolic
Acidosis - BG HCO3- (AG-12) 21 (23-12) 2111 32
- AG Metabolic Acidosis Metabolic Alkalosis
81Interpretation
- Primary respiratory alkalosis and metabolic
acidosis and metabolic alkalosis. - Huh?
- An example would be a patient with pneumonia who
is hyperventilating secondary to hypoxemia, who
also has azotemic renal failure and has
hypokalemia secondary to aggressive diuretic
therapy.
827.52, 30, 21
- Change in CO2 -10 torr
- Change in pH 0.12
- Change in HCO3- -3 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 30
HCO3- 24 mEq/L
83Can you have a quadruple disorder?
84Acid-Base Map
85pH 7.35 PaCO2 60 mm Hg
86pH 7.60 PaCO2 30 mm Hg
87pH 7.38 PaCO2 70 mm Hg
88pH 7.35 PaCO2 30 mm Hg
89Fun reading
- Last part of Chapter 14 in Malley.
907.43, 34, 22
- Change in CO2 15 torr
- Change in pH -0.02
- Change in HCO3- 7 mEq/L
BASELINE Disorder 1 Disorder 1 Disorder 2 Disorder 2
pH 7.40
PaCO2 40 torr 55
HCO3- 24 mEq/L