2IV60 Computer Graphics Basic Math for CG - PowerPoint PPT Presentation

1 / 63
About This Presentation
Title:

2IV60 Computer Graphics Basic Math for CG

Description:

Title: PowerPoint Presentation Last modified by: Wijk, J.J. van Created Date: 1/1/1601 12:00:00 AM Document presentation format: On-screen Show (4:3) – PowerPoint PPT presentation

Number of Views:56
Avg rating:3.0/5.0
Slides: 64
Provided by: winTueNl96
Category:

less

Transcript and Presenter's Notes

Title: 2IV60 Computer Graphics Basic Math for CG


1
2IV60 Computer GraphicsBasic Math for CG
  • Jack van Wijk
  • TU/e

2
Overview
  • Coordinates, points, vectors
  • Matrices

HB A-1
3
nD Space
  • nD Space ?n (typically)
  • n number of dimensions
  • Examples
  • 1D space time, along a line or curve
  • 2D space plane, sphere
  • 3D space the world we live in
  • 4D space 3D time

HB A-2
4
Coordinates
  • 2D Cartesian coordinates

x
y
(x,y)
(x,y)
y
x
Standard Screen (output,
input)
HB A-1
5
Polar coordinates
y
(x,y)
r
?
x
HB A-1
6
3D coordinates 1
  • 3D Cartesian coordinates

(x,y,z)
z
(x,y,z)
z
x
y
x
y
Right-handed Left-handed
HB A-1
7
3D coordinates 2
  • 3D Cartesian coordinates

(x,y,z)
(x,y,z)
z (middle)
z (middle)
y (index)
x (thumb)
x (thumb)
y (index)
Right-handed Left-handed
HB A-1
8
3D coordinates 3
  • Cylinder coordinates

(x,y,z)
z
y
x
?
HB A-1
9
3D coordinates 4
  • Spherical coordinates

(x,y,z)
z
f
r
y
x
?
HB A-1
10
Points
  • Point position in nD space
  • Notation P (HB), also P, p, p en p
  • (x,y,z) (HB), also (x1, x2, x3), (Px, Py, Pz),
  • (r, ?, z), ( r, ?, ?),

HB A-2
11
Vectors 1
  • Vector
  • arrow
  • multiple interpretations (displacement, velocity,
    force, )
  • has a magnitude and direction
  • has no position
  • Notation V (HB), also V, v, v en v
  • (Vx, Vy, Vz) (HB), also (x, y, z), (x1, x2, x3)

HB A-2
12
Vectors 2
y
P2
y2
P1
y1
V directed line segment, or difference between
two points
x
x1
x2
HB A-2
13
Vectors 3
  • Length of a vector

HB A-2
14
Vectors 4
  • Direction of a vector Direction angles.
  • Unit vector V
  • Magnitude info is removed, direction is kept.

z
g
b
y
x
a
HB A-2
15
Vector addition
  • Add components, put vector head to tail

y
y
W
VW
W
V
V
x
x
HB A-2
16
Scalar multiplication of vector
  • Multiplication components with scalar s

y
y
2V
V
x
x
HB A-2
17
Combining vector operations
  • Infinite line through P with direction V
  • L(t) P Vt, t ??

V
y
P
t
x
t parameter along line t ?a, b line segment
HB A-2
18
Vector multiplication 1
  • Scalar product or dot product
  • Product of parallel components, gives 1 real
    value

W
V
q
W cos q
V
HB A-2
19
Vector multiplication 2
  • Scalar product

HB A-2
20
Vector multiplication 3
  • Vector product or cross product gives a vector
    (in 3D)
  • n perpendicular to V and W

V?W
W
q
V
n
HB A-2
21
Vector multiplication 5
  • Scalar product

HB A-2
22
Vector multiplication 6
  • Scalar product
  • scalar
  • Test if vectors are perpendicular
  • cos
  • project,
  • Vector product
  • vector
  • Get a vector perpendicular to two given vectors
  • sin
  • surface area,

HB A-2
23
Exercise 1
  • Given a point P.
  • Requested Reflect a point Q with respect to P.

Q
W P Q Q Q 2W 2P Q or P (P
Q )
P
Q
We dont need coordinates!
24
Exercise 1
  • Given a point P.
  • Requested Reflect a point Q with respect to P.

Q
Alternative P is halfway Q and Q P (Q
Q)/2 2P Q Q Q 2P Q
P
Q
25
Exercise 2
  • Given a line L L(t) P Vt .
  • Requested Reflect a point Q with respect to L.

We know Q Q 2 W W L(t) Q W. V 0
L(t)
V
y
P
t
x
26
Exercise 2
We know L(t) P Vt Q Q 2 W W L(t)
Q W. V 0
Substitute to get t (L(t) Q).V 0 (P Vt
Q).V 0 V .V t (P Q).V 0 t ((Q P).V) /
(V .V)
Then Q Q 2 (P Vt Q) 2P Q
V((Q P).V / V .V)
27
Steps to be made
  • Write down what you know
  • Eliminate, substitute, etc. to get he result
  • Check the result
  • Does it make sense?
  • Is there a simpler derivation?

28
Exercise 3
  • Given a triangle with vertices P, Q en R, where
    the angle PQR is perpendicular.
  • Requested Rotate the triangle around the line PQ
    over an angle a . What is the new position R of
    R?

P
Q
R
29
Circle in space
y
C(?)
r
?
x
A1, B1, A.B 0
  • C(?) (r cos ?, r sin ?, 0)
  • (0,0,0) r cos ? (1,0,0) r sin ?
    (0,1,0)
  • P r cos ? A r sin ? B

30
Exercise 3
A (R Q) / R Q B (R Q)?(P Q) / (R
Q)?(P Q) R Q R Q cos ? A R
Q sin ? B
P
Q
R
31
Use
  • Scalar product, cross product
  • coordinate independent definitions
  • vector algebra
  • Dont use
  • arccos, arcsin
  • y f(x)

32
Very short intro to Linear Algebra
  • System of linear equations
  • Such systems occur in many, many applications.
  • They are studied in Linear Algebra.

HB A-5
33
Very short intro to Linear Algebra
  • System of linear equations
  • Typical questions
  • Given u, v, w, what are x, y, z?
  • Can we find a unique solution?

HB A-5
34
Very short intro to Linear Algebra
  • System of linear equations
  • Crucial in computer graphics
  • Transforming geometric objects
  • Change of coordinates

HB A-5
35
Example transformation
y
P (x,y)
x
y
P
V
U
y
x
x
HB A-5
36
What is a matrix?
  • Matrix
  • Mathematical objects with operations
  • Matrix in computer graphics
  • Defines a coordinate frame
  • Defines a transformation
  • Handy tool for manipulating transformations

HB A-5
37
Matrix
  • Matrix rectangular array of elements
  • Element quantity (value, expression, function,
    )
  • Examples

HB A-5
38
Matrix
  • r ? c matrix r rows, c columns
  • mij element at row i and column j.

HB A-5
39
Matrix
  • r ? c matrix r rows, c columns
  • mij element at row i and column j.

r ? c elements
HB A-5
40
Matrix
  • r ? c matrix r rows, c columns
  • mij element at row i and column j.

HB A-5
41
Matrix
  • r ? c matrix r rows, c columns
  • mij element at row i and column j.

HB A-5
42
Matrix
Column vector matrix with c 1 Used for
vectors (and points)
HB A-5
43
Matrix
  • Matrix as collection of column vectors

HB A-5
44
Operations on matrices
  • Multiplication with scalar
  • simple
  • Addition
  • simple
  • Matrix-matrix multiplication
  • More difficult, but the most important

HB A-5
45
Scalar Matrix multiplication
  • Matrix M multiplied with scalar s

HB A-5
46
Scalar Matrix addition
HB A-5
47
Scalar Matrix addition
  • Just add elements pairwise
  • A and B must have the same number of rows and
    columns
  • Generalization of vector and scalar addition

HB A-5
48
Matrix Matrix multiplication
j 1 k?
  • cij dot product of row vector ai and column
    vector bj
  • columns A must be the same as rows B n p
  • C m ? q matrix

HB A-5
49
Matrix Matrix multiplication
Example
i 3
j 2
i3, j2
HB A-5
50
Matrix Matrix multiplication
Example
HB A-5
51
Matrix Matrix multiplication
Example
HB A-5
52
Matrix Matrix multiplication
Example
HB A-5
53
Matrix Matrix multiplication
  • AB ? BA
  • Matrix matrix multiplication is not commutative!
  • Order matters!
  • A(BC) ABAC
  • Matrix matrix multiplication is distributive

HB A-5
54
Example transformation sequence (coordinate
version)
Unclear! Error-prone!
HB A-5
55
Example transformation sequence (matrix vector
version)
HB A-5
56
Example transformation sequence (compact matrix
vector version)
Matrix vector notation allows for compactness
and genericity!
HB A-5
57
Matrix Transpose
Transpose matrix Interchange rows and columns. r
? c matrix M ? c ? r matrix MT
HB A-5
58
Matrix Inverse
Simple algebra puzzle. Let ax b. What is x?
Linear algebra puzzle. Let MU V. What is U?
HB A-5
59
Matrix Inverse
HB A-5
60
Matrix Inverse examples
HB A-5
61
Matrix Inverse examples
Does not exist, cannot be inverted.
HB A-5
62
Matrix Inverse
  • Does not always exist
  • In general if determinant M 0, matrix
    cannot be inverted
  • Inverse for n 1 and n 2 easy
  • Inverse for higher n use library function
  • Important special case orthonormal matrix.

HB A-5
63
Overview
  • Coordinates, points, vectors
  • definitions, operations, examples
  • Matrices
  • definitions, operations, examples
Write a Comment
User Comments (0)
About PowerShow.com