Email: ycliang@jlu.edu.cn - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

Email: ycliang@jlu.edu.cn

Description:

Title: 1 Author: xin Last modified by: Created Date: 3/2/2006 1:25:40 PM Document presentation format: Company – PowerPoint PPT presentation

Number of Views:93
Avg rating:3.0/5.0
Slides: 37
Provided by: xin79
Category:
Tags: algorithm | edu | email | jlu | ycliang

less

Transcript and Presenter's Notes

Title: Email: ycliang@jlu.edu.cn


1
????????
  • ???
  • Email ycliang_at_jlu.edu.cn
  • 21st May 2009

2
??????????????????????????????????????????????
?????????????????????????
? ?
3
???????
  • ??????????,????????????????????,??????????????????
    ??????????????????,???????????
  • ??????????????????,??????????????
  • ???????????????????????
  • ?????????????,?????????????
  • ???????,????????????

4
???????
  • ???????????????????
  • ?????????,????????????????????????
  • ??????????????????
  • ????????????????
  • ??????????????????????
  • ???????????
  • ????????????????

5
??????
  • ???
  • ????,???????????????
  • ????????????,????????
  • ????????????
  • ??????,???????????????
  • ???
  • ??????????,???????????
  • ???????????,????????????,??????????????
  • ?????,????????????

6
??????
  • ???
  • ??????????????,?????????
  • ????????????????????,????????????
  • ?????????
  • ????????????????????,????????
  • ?????????????,?????????????,?????????

7
??????
  • ????????????????????????????????????,???????
  • ????????????????
  • ???
  • ????????????????
  • ??????????

8
???????????
  • ????
  • ???????????????????????????????????????????????
    ???????
  • ????????????????????????,?????????????????????

9
???????????
  • ??
  • ??????????????????????,??????????????????,???????
    ????????,?????????????????,?????????????
  • ??????????????????,??????????????????????,??????

10
???????????
  • ????????????
  • ?????????????,???????????
  • ????,???????????????
  • ??????,?????,??????,?????????????
  • ?????????????????????,??????????

11
??????
  • ???????????
  • ??(Title)
  • ??(Abstract)
  • ???(Keywords)
  • ??(??,??,??)(Introduction)
  • ??(Body)
  • ??(Conclusions)
  • ??(Acknowledgement)
  • ????(References)

12
??????
  • ??(Title)
  • ??????????????????????
  • ?????????
  • ??(Abstract)
  • ??????????,???????????????????
  • ??????????
  • ????????????
  • ?????????
  • ???(Keywords)
  • 3-5???????

13
?????????
  • ?? 1-1.
  • ????SVD?PCA??????
  • ???????Frobenius????????(SVD)???????????????????,
    ???SVD???????????
  • ?????????,?????,Karhunen-Loève??,?????

14
?????????
  • ?? 1-2.
  • Title On the Equivalence of SVD and PCA
  • Abstract A novel proof on the optimal
    performance of the proper orthogonal bases of the
    singular value decomposition (SVD) is presented
    based on the Frobenius norm. The equivalence of
    the SVD and the principal component analysis
    (PCA) is indicated.
  • Keywords Proper orthogonal decomposition,
    principal component analysis, Karhunen-Loève
    decomposition, singular value decomposition

15
????????
  • ?? 2-1.
  • ?????Elman?????????????
  • ?????Elman?????????????????-????Elman?????-????E
    lman????,?????????????,???????????????????Lyapunov
    ?????????????????????,?????????????????????????Elm
    an????????????????????????Elman????,??????????????
    ,????????????,???????????????,??????????????????,?
    ???????????????????????????????????
  • ?????????????????

16
????????
  • ?? 2-2.
  • Title Improved Elman Model and Recurrent
    Back-propagation Control Neural Networks
  • Abstract Two improved Elman neural networks,
    output-input feedback Elman network and
    output-hidden feedback Elman network, are
    presented based on the Elman neural network. A
    recurrent back propagation control neural network
    model is developed by using the output-input
    feedback Elman network as a passageway of the
    error back propagation. The stability of the
    improved Elman neural networks is proved in the
    sense of Lyapunov stability theory. The optimal
    adaptive learning rates are obtained, which could
    guarantee the stable convergence of the improved
    Elman networks. The ultrasonic motor is simulated
    using the Elman and improved Elman networks,
    respectively. Besides simulating the speed of the
    ultrasonic motor successfully some useful results
    are also obtained. According to the results we
    could choose different network models based on
    the sampling situation in the fieldwork.
    Numerical results show that the recurrent back
    propagation control neural network controller has
    good effectiveness for various kinds of reference
    speeds of the ultrasonic motor.
  • Key words neural network feedback Lyapunov
    stability

17
????????????
  • ?? 3-1.
  • ???????????????????????????
  • ???????????????????????????????????????????????,?
    ??????????????????????,??????????????????,????????
    ??????????????????????????BAliBASE????????????????
    ??????,??Baum-Welch????????????,??????????????????
    ??,??????????????
  • ????????????????????????

18
????????????
  • ?? 3-2.
  • Title A Hidden Markov Model and Immune Particle
    Swarm Optimization-Based Algorithm for Multiple
    Sequence Alignment
  • Abstract Multiple sequence alignment (MSA) is a
    fundamental and challenging problem in the
    analysis of biologic sequences. In this paper, an
    immune particle swarm optimization (IPSO) is
    presented, which is based on the models of the
    vaccination and the receptor editing in immune
    systems. The proposed algorithm is used to train
    hidden Markov models (HMM), further, an
    integration algorithm based on the HMM and IPSO
    for the MSA is constructed. The approach is
    examined by using a set of standard instances
    taken from the Benchmark Alignment database,
    BAliBASE. Numerical simulation results are
    compared with those obtained by using the
    Baum-Welch training algorithm. The comparisons
    show that the proposed algorithm not only
    improves the alignment abilities, but also
    reduces the time cost.
  • Key words Hidden Markov models, particle
    optimization swarm, immune systems, multiple
    sequence

19
??????
  • ??(??,??)(Introduction)
  • ??,????????????
  • ?????,????????,????????????????????
  • ???????????,?????????,????????
  • ??(Body)
  • ??????????????????????????????????????
  • ???????????????????????

20
??????
  • ??????,?????????????
  • ??????,???????????,????????????,??????
  • ?????,?????????
  • ??????????????????????????????????,???????????????
    ??,????????
  • ??????????????????????????????????,???????????????
    ?????????????

21
??????
  • ?????????????????????,???????????????????
  • ??????????,??????????
  • ?????????????????????????????????
  • ??????????????
  • ??????????,????????????????????????????????????,??
    ????????

22
??????
  • ??(Conclusions)
  • ??????????????,?????????
  • ?????????,?????,???????,??????
  • ??????????????
  • ??(Acknowledgement)
  • ?????????????????????,???????????????

23
??????
  • ????(References)
  • ????????????
  • ????????????????????????????,???????????
  • ????????????????????????????????
  • ?????????????????????
  • ????????????????,????????????????????

24
??????
  • ??????????????????,?????????????,?????????????????
    ?
  • ???????????
  • ????????????????????????

25
????????
  • ?????????
  • ?????????????????????,????????????????????,???????
    ????????????????
  • ?????????????????????????????????????????????
  • ??????????,???????
  • ???????????????????????,????????,?1,2??
  • ????(Appendix)(???)
  • ??????????????????????

26
???????
  • ?????
  • ???????,?????,?????
  • ?????????
  • ??????
  • ?????????
  • ?????
  • ?????
  • ????????

27
???????
  • ????,??????????,?????
  • ????????,???????????
  • ????????,???????
  • ???????,??????????
  • ???????
  • ?????????
  • ?????????(Email?????)?
  • ?????????
  • ???????????????,?????,????????????
  • ??????????

28
??????
  • ???????,?????????
  • ????????(?????????)
  • ????????(???????)
  • ????????????????
  • ???SCI,EI????

29
??????
  • ???????????????????
  • ????
  • ????
  • ?????
  • ????
  • ????????
  • ????
  • ?????
  • ????
  • ??????(???)
  • ??SCI,EI????

30
??????
  • ?????????
  • ?????????
  • ????????????
  • ????????
  • ??????????????
  • ?????

31
?????????
  • ????????(4/9?)
  • Liang YC, Feng DP, Liu GR, Yang XW and Han X.
    Neural identification of rock parameters using
    fuzzy adaptive learning parameters. Computers
    Structures, 2003, 81(24-25) 2373-2382. (SCI, EI)
  • Liang YC, Feng DP, Lee HP, Lim SP and Lee KH.
    Successive approximation training algorithm for
    feedforward neural networks. Neurocomputing,
    2002, 42 311-322. (SCI, EI)
  • Liang YC, Feng DP, Cooper JE. Identification of
    restoring forces in nonlinear vibration systems
    based on improved fuzzy adaptive BP algorithm.
    Journal of Sound and Vibration. 2001, 242 (1)
    47-58. (SCI, EI)
  • Liang YC, Feng DP, Lee HP, Lim SP and Lee KH. A
    study of packaging identification using fuzzy
    adaptive neural networks. Mechanics Research
    Communications. 2001, 28(2) 147-156. (SCI, EI)

32
?????????(1)
  • ????????(3/25?)
  • Wu CG, Liang YC, Lee HP, Lu C. Generalized
    chromosome genetic algorithm for generalized
    traveling salesman problems and its applications
    for machining. Physical Review E, 2004, 70, 1-13.
    (SCI )
  • Wu CG, Liang YC, Lee HP, Lu C, Yang XW. Study on
    optimization of agent positions in land combat
    simulation. Progress in Natural Science, 2004, 14
    (3) 257-261. (SCI)
  • ???, ???, ???, ???, ???. ??SVD?PCA ??????. ?????,
    2004, 27 (2) 286-288.

33
?????????(2)
  • ????????(3/24?)
  • Shi XH, Liang YC, Lee HP, Lu C and Wang LM. A
    variable population-size genetic algorithm and a
    hybrid evolutionary algorithm based PSO-GA.
    Information Processing Letters, 2005,
    93(5)255-261. (SCI)
  • Shi XH, Liang YC, Lee HP, Lin WZ, Xu X, Lim SP.
    Improved Elman networks and applications for
    controlling ultrasonic motors. Applied Artificial
    Intelligence, 2004, 18 (7) 603-629. (SCI)
  • ???,???,??.???Elman?????????????.????, 2003,
    14(6) 1110-1119. (EI)

34
?????????(3)
  • ????????(3/22?)
  • Ge HW, Sun L, Liang YC, Qian F. An effective
    PSO-and-AIS-based hybrid intelligent algorithm
    for job-shop scheduling, IEEE Transactions on
    System, Man and Cybernetics, Part A, Systems and
    Humans, 2008, 38(2) 358-368. (SCI)
  • Liang YC, Ge HW, Zhou CG. Solving traveling
    salesman problems by genetic algorithms. Progress
    in Natural Science, 2003, 13 (2) 135-141. (SCI)
  • ???,???. ?????????????????????????.
    ????????,2006,43(8) 1330-1336. (EI)

35
?????
  • ??????????????????,?????????????????????
    ?????,????????????

36
  • ? ?!
Write a Comment
User Comments (0)
About PowerShow.com