Title: St
1PI Chris Martin (Caltech)
PI O. LeFèvre (Marseille) G. Vettolani
(Bologna)
THE GALEX-VVDS DEEP SURVEYS Evolution of the
Far UV luminosity Function and Density ( SFR)
up to z1.5
Stéphane Arnouts David Schiminovich Olivier
Ilbert and VVDS and GALEX teams
2- One of the principal goal of GALEX
- Evolution of the SFR density up to z1.5
- UV sensitive measurement of the ongoing Star
Formation - Used to derive SFRD
- locally (zlt0.2 , FOCA)
- at high-z (zgt2.5, in optical band)
- GALEX fills the gap where most of the SFR
evolution is seen - Required
- DEEP and WIDE GALEX observations
- DEEP and WIDE optical spectro-photometry
observations
3- Outline of the talk
- Results from a PILOT STUDY done in the 2hr field
- GALEX Deep obervations
- VVDS Deep spectroscopy and photometry
- Spectroscopic sample
- Evolution of the FUV LF and LD
- Implication in the SFR history
- Morphology of a sub-sample of UV luminous
galaxies - Recent Photo-z analyses
- Combined dataset VVDSCFHTLSSWIRE
4GALEX-02hr field
Field of View 1.2 degrees
Bands FUV 1350-1750 A NUV 1750-2800 A simultaneous
Angular resolution 4.5 FWHM
Used area ?????
FUVNUV color image
5GALEX Galaxy Number counts
6The 2hr field combined dataset
VVDS BVRI (JK) VVDS spectroscopy
IAB24
GALEX
AND CFHTLS ugriz SWIRE 3.6 to 8?m 24?m
(section photo-z)
Spectroscopic Area 0.46 deg2
7NUV band5 PSF
GALEX - OPTICAL matches
8B band1 PSF
GALEX - OPTICAL matches
9GALEX - OPTICAL matches
PSF5 but good astrometry
Counterparts searched in a distance 4
?ast 0.7
- ALL UV sources have an optical counterparts
- NUVlt24.5 50 have a single optical counterparts
- NUVlt24.5 35 have two optical counterparts
- NUVlt24.5 15 have more than two optical
counterparts
10GALEX - OPTICAL matches
- Preliminary Analysis
- UV sources matched with the closest OC
- which is in 90 cases the brightest one
- Impact of the blends based on
- -1 expected colors from single match
- -2 apportion the UV flux among the
multiple OCs - using Sutherland Sanders (1992)
method
ltUV fluxgt overestimated by 0.25 mag for 2
OCs 0.50 mag for multiple OCs
11GALEX with VVDS spectroscopy
1100 Zspec 19.5ltNUVlt24.5 15 UV sample
12Color distribution
Saturation in I
Spectro Good sampling of UV sources. Saturatio
n 95 at zlt0.2 (SDSS) IABgt24 only 4
Limit spectro
13Redshift distribution
with secure redshifts
Unique OC lt 2 Ocs full sample
14 FUV Luminosity Function with 1000 Z-spectro
(Arnouts, Schiminovich, Ilbert et al. 2005)
- FUVabs from NUV mag
- LF estimators
- Vmax, C, SWML, STY
- using ALF tool
- (Ilbert et al., 2004)
- Weight to account for
- Spectroscopic strategy
- NUV counts completeness
Local GALEX LF (Wyder et al., 2005)
Strong evolution from 0ltzlt1.2 (GALEX)
15 FUV Luminosity Function at higher z (Arnouts,
Schiminovich, Ilbert et al. 2005)
Zphot from HDF NS (Arnouts et al., 1999
2002) ?z to be FUV rest-frame 1.75ltZlt2.25
with F450lt27 2.40ltZlt3.40 with F606lt27
1700A LF _at_z3 (Steidel et al., 1999)
Trend continues to z3 (HDF)
16Evolution of the FUV Luminosity Function
Arnouts, Schiminovich, Ilbert et al (2005)
Possible evolution in slope
Significant evolution 0 lt z lt 1 ?M 2
mag (or x6 in L) 1 lt z lt 3 ?M
1 mag
17Evolution of FUV Luminosity DensitySchiminovich,
Ilbert, Arnouts et al. (2005)
LD using ALF tool
(1z)3.5
(1z)2.5
(1z)1.5
(1z)2.5 luminosity density evolution since
z1 Continued slow evolution 1ltzlt3
18UV Luminous Galaxies (UVLGs)(DS, Ilbert, Arnouts
et al)
- Luminosity density of
- UV luminous Lgt0.2 L(z3)
- LBG-like galaxies shows
- dramatic evolution (1z)5
- Steeper than QSO
- LD evolution
- (Boyle Madau et al)
- UVLGs produce a
- significant fraction of LD
- at z 1 (25)
Total
(1z)2.5
19Sizes of extreme UV-luminous galaxies
(Slide courtesy of D.S.)
Local Measurement GALEX-SDSS (Heckman, Hoopes
et al, 2005)
LFUV,bol gt 2x1010 Msol SFR 5-50
Msol/yr Local u-band r1/2 (circles) Compact
galaxies may be LBG analogs with high SFR/area
and SFR/ltSFRgt
Large
Compact
0.55ltzlt0.8 COSMOS M. Zamojski D.
Schiminovich V-band r1/2 (squares) r1/2
consistent with local sample Locus slightly
higher than for LBGs
20Large UV Luminous Galaxies (UVLGs) r5010
kpc 0.55ltzlt0.8
(Slide courtesy of D.S.)
21Compact UV Luminous Galaxies (UVLGs) r502.5
kpc 0.55ltzlt0.8
(Slide courtesy of D.S.)
22Dust attenuation correctionSchiminovich, Ilbert,
Arnouts et al. (2005)
Using UV slope ? AFUV f(?)
FWHM(?)1.4 ?(?)0.4
(Meurer et al.,1999Kong et al., 2004)
Full sample ? consistent with - local FUV
sample (Treyer et al., 2005) - high-z sample
(Adelberger, 2000)
23Uncorrected SFR vs. Z
Schiminovich, Ilbert, Arnouts et al. (2005)
Conv. LFUV to SFR (Kennicutt, 1998) No
dependence of dust attenuation AFUV with SFRuncor
NUV lt24.5
NUV lt26 (UDIS)
L(z)
As a consequence
24Corrected SFR vs. Z
Schiminovich, Ilbert, Arnouts et al. (2005)
Conv. LFUV to SFR (Kennicutt, 1998)
AFUV (Meurer et al., 1999)
NUV24.5 AFUV 4.0 2.5 1.5
0.5 0.
Paucity of low AFUV galaxies with high SFRcor
? - Large scatter in the measured AFUV ? -
Dust attenuation law?
M99 relation may overestimate AFUV for
star-forming galaxies
25Evolution of the SFR Density uncorrected and
dust-corrected (hatched region)
Uncorrected SFRD
(1z)2.5
0ltzlt1.5 ?2.5 1.2ltzlt3 ?0.5
Corrected SFRD
Meas ltAFUVgt1.8 Min AFUV1.0 (local UV sample
Buat et al. 2005)
26Photometric Reshifts in F02 field works by
Ilbert , Arnouts, Budavari et al
Photometry used VVDS
(U)BVRI(JK) CFHTLS ugriz SWIRE 3.6 4.5?m
VVDS (U)BVRI (JK)
GALEX
Classification in Galaxy/Star/QSO
FUV LF with photo-z for a large sample
Z photometric Area 0.65 deg2
27Photometric Reshifts of UV galaxies in F02 field
Secure Zspec 949
28Photometric Reshifts of UV galaxies in F02 field
All Zspec 1127
VVDS (U)BVRI (JK)
29Color-color checks vs classification
(NUV-B) vs (B-I)
VVDS (U)BVRI (JK)
Star/galaxy separation Galaxies below the line
30Color-color checks vs classification
VVDS (U)BVRI (JK)
(FUV-NUV) vs (B-I)
31Color-color checks vs classification
(B-I) vs (3.6-4.5)
VVDS (U)BVRI (JK)
Same QSOs and Stars regions for spec. and phot.
32Galaxy Redshift distribution
VVDS (U)BVRI (JK)
33 FUV Luminosity Function with 6000 Z-photo
At z1 no constraint on slope Consistent with
?-1.6
34 FUV Luminosity Function Zspec vs Zphot
- Consistent with LF(spec)
- Smaller errorbars
-
- At 0.2ltzlt0.4
- constraint on M
35 FUV Luminosity Function Zspec vs Zphot
No evolution in ? 0ltzlt0.8
Fixed ?
Consistent M(z) evolution
36 Galaxy Type classification with Zspec
(Arnouts, Schiminovich, Ilbert et al., 2005)
Kinney et al, 1996
- - Small number of galaxies
- redder than Sb
- Degeneracy between
- old syst. and dusty SB
Poggianti et al 1997
(NUV-R) correlated with SFRcurrent/ ltSFRgtpast
(Salim et al. 2005) Galaxy SF history (B-I)
correlates with (NUV-R) (B-I) as a crude proxy
for galaxy type
Apply to the Zphot sample
37 Galaxy Type classification with Zphot
Type fraction vs Z
(FUVlt22, zlt0.2)
Increase of the unobscured SB class from z0 to 1
38 Galaxy Type LF with Zphot
39 Galaxy Type LF with Zphot
40 Galaxy Type LF with Zphot
41 Galaxy Type LF with Zphot
Similar evolution for the two reddest
classes Stronger evolution of the SB class wrt
red ones
42 Galaxy Type LF with Zphot
?(z)constant per type 2 Red classes -0.9lt ?
lt-1.2 SB class -1.5lt ? lt-1.8
Modest luminosity evolution of SB class wrt
reddest classes
Number density evolution of the SB class
43- Conclusion
- GALEX-VVDS PILOT STUDY
- Global evolution of the FUV light of galaxies in
0ltzlt1.5 - and LFs per type strong increase in
density of SB class - Constraint on the evolution of the SFRD
(uncorr.,corr.) - A new class of UVLG at 0.5ltzlt1 (LBG analogs)
- in easy reach for optical follow-up
-
- NEAR FUTUR
- GALEX-VVDS-SWIRE nice combined science
- (zphot, dust law, SFR vs Mass,
AGN evolution,...) - More deep field and a few deeper ( lower SFR
sensitivity) - SF sites vs LSS (UV / optical-IR
cross-correlation)
44- Conclusion
- GALEX-VVDS PILOT STUDY
- Global evolution of the FUV light of galaxies in
0ltzlt1.5 - and LFs per type strong increase in
density of SB class - Constraint on the evolution of the SFRD
(uncorr.,corr.) - A new class of UVLG at 0.5ltzlt1 (LBG analogs)
- in easy reach for optical follow-up
-
- NEAR FUTUR
- GALEX-VVDS-SWIRE nice combined science
- (zphot, dust law, SFR vs Mass,
AGN evolution,...) - More deep field and a few deeper ( lower SFR
sensitivity) - SF sites vs LSS (UV / optical-IR
cross-correlation)