Title: Oxidative decarboxylation of Pyruvate / Acetyl CoA
1Oxidative decarboxylation of Pyruvate / Acetyl
CoA ?    Pyruvate Dehydrogenase Complex, Enzymes
and coenzymes ?    Formation of Acetyl CoA,
Regulation of Pyruvate Dehydrogenase
complex ?    Fate of Pyruvate                   Â
  D4 226-231,   L2  464-465
2Introduction Most energy-generating metab. Path.
produce acetyl (A) coenzyme A (CoA) fig6.10, AA
? deamination ? ACoA Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â FA ?
oxidation ? ACoA Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Glu ? glycolysis
? ACoA Glu, Lact, AA (ala, ser, cys) ? Pyr ?
PyrDH ? ACoA Pyr (cytosol) ? mitoch memb (pyr is
permeable) ? Pyr (mitosol) ? PyrDH/CoA
(NADH/CO2) ? ACoA
3(No Transcript)
4PyrDH (multienzyme complex) Table,    3  Enzs
(PyrDH, DHLTA-lase, DHLDH) fig6.14, 5  CoEnzs
(TPP, Lip, NAD, FAD, CoA) fig6.15,  1) C3O3H3
TPP ? PyrDH ? CO2 C2OH5-TPP Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
(Pyr loses CO2 Hydroxyethyl is
formed) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 2) C2OH5-TPP Lip-S2
CoA ? PyrDH/DHLTA-lase ? C2OH3-S-Lip-SH
TPP Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (Hydroxyethyl is oxidized
to form Dihydroxylipoamide) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 3)
C2OH3-S-Lip-SH CoA TTP ? DHLTA-lase ?
Lip-S2H2 ACoA Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (Acetyl group
is transferred to CoA Dihydroxylipoamide is
reoxidized) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 4) Lip-S2H2 FAD ?
DHLTA-lase/DHLDH ? FADH2 Lip-S2 Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
   (Hydrogen from Lipolic Acid is transffred to
FAD) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 5) FADH2 NAD ? DHLDH ?
FAD NADH H
5(No Transcript)
6PyrDH Regulation fig6.16, PyrDH a "active" ? PK
(Mg2-ATP-dependent) ? PyrDH b "inactive" PyrDH b
"inactive" ? PP-tase (Mg2- Ca2-dependent) ?
PyrDH a "active" Â ATP, ACoA, NADHÂ () PK
inactivates PyrDH  ADP, CoA, NAD, Pyr () PK
activates the PyrDH FA oxidation () PyrDH
activity in Liver (? in NADH/NAD, ACoA/CoA
ratio) INSÂ Â Â Â () PyrDH activity in adipose
tissue by () PP-tase Epinephrine / Ca2 ()
PyrDH activity in heart by () PP-tase
7(No Transcript)
8Pyruvate (3C) Fate fig6.12, Pyr
(carboxylation) ? PC-lase (gluconeogenesis) ?
OA Pyr (transamination) ? AT-ase (essential AA) ?
Alanine Pyr (reduction) ? LDH (anaerobic
glycolysis) ? Lactate Pyr (oxidation) ? PyrDH
(aerobic glycolysis) ? ACoA Pyr (fermentation)
? Ethanol (in yeast)
9Citric Acid Cycle (CAC) CAC is for complete
oxidation of Glu (CO2H2O) production of
further ATP in mitoch. matrix (mitosol) by
high-energy phosphate bond (1 GTP) by reducing
equivalent (3 NADH, 1 FADH2) in the
elect-trans-oxid phosph sequence
(mitosol) fig6.19,  OA (4C) ACoA (2C) ? CS-ase
? C-ate (6C) ? A-tase ? IsoC (6C) ? ICDH ? a-KG
(5C) ? a-KGDH ? SCoA (5C) ? SCoA S-tase ? S-ate
(4C) ? SDH ? F-ate (5C) ? F-ase ? M-ate (4C) ?
MDH ? OA (4C)
10(No Transcript)
11fig, Anaplerotic reaction (CAC)
Pyr ? Pyr C-lase (-CO2/ATP) ? OA ? PEP C-lase
(CO2/Pi) ? PEP Pyr ? Malic Enz (NADPH) ? M-ate ?
MDH (NADH) ? OA
12Clinical Correlations 1. Pyruvate Dehydrogenase
Deficiency            a) Deficiency in
different regulatory subunits in
children. Â Â Â Â Â Â Â Â Â Â Â b)Â High serum Ala,
Pyruvate, Lactate (lactic acidosis). Â Â Â Â Â Â Â Â Â Â Â
c)Â low O2 leads to shock, sever neurological
defect, death. Â Â Â Â Â Â Â Â Â Â Â d)Â PyrDH is assayed
in skin fibroblasts culture. Â Â Â Â Â Â Â Â Â Â Â e)Â can
be treated with high ketogenic diet low
carbohydrates, Â Â Â Â Â Â Â Â Â Â Â f)Â and/or
dichloroacetate (inhibits PyrK)