68HC11 Analog I/O - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

68HC11 Analog I/O

Description:

68HC11 Analog I/O Chapter 12 Analog to Digital Converter (ADC) What is it? Converts an analog voltage level to a digital output. Dout = F(Vin) Analog to Digital ... – PowerPoint PPT presentation

Number of Views:74
Avg rating:3.0/5.0
Slides: 31
Provided by: Reginal91
Learn more at: https://eng.fsu.edu
Category:

less

Transcript and Presenter's Notes

Title: 68HC11 Analog I/O


1
68HC11 Analog I/O
  • Chapter 12

2
Analog to Digital Converter (ADC)
  • What is it?
  • Converts an analog voltage level to a digital
    output.
  • Dout F(Vin)

3
Analog to Digital Converters
  • Terminology
  • Full Scale Voltage VFSVH-VL
  • Difference between maximum and minimum voltage
    levels
  • Bits (N) Number of bits in the digital output
  • Resolution (LSB) smallest quantizing step size
  • LSB Vfs/2N
  • Conversion time time needed for one conversion
  • Quantization error Voltage error between
    digital output and analog input.
  • The maximum error is 1 LSB

4
Analog to Digital ConvertersIn General
  • Given VFS, N bits
  • LSB VFS/(2N)
  • Digital Output Dout
  • Analog Output Vout
  • Vout DoutLSB Dout VFS/2N
  • Quantization Error Vin - Vout

5
Analog to Digital ConvertersExample
  • Given VFS5V, N2 bit
  • What is the bit resolution (LSB) and the transfer
    curve
  • Answer
  • LSB 5/(22) 1.25V
  • 0.000V lt Vin lt 1.25V ? Dout 00
  • 1.25V lt Vin lt 2.50V ? Dout 01
  • 2.50V lt Vin lt 3.75V ? Dout 10
  • 3.75V lt Vin lt 5.000V ? Dout 11

6
2-bit Analog to Digital Converter Voltage
Transfer Curve
Dout
Vin, V
7
Analog to Digital ConvertersExample
  • Given VFS5V, N8 bits
  • What is Dout (in hex) for Vin2.35V
  • Answer
  • LSB 5/(28) 0.0195V 19.5mV
  • 2N 256
  • Dout INT(2.35V/19.5mV)12078

8
Analog to Digital ConvertersExample
  • Given VFS5V, N8 bits, Dout78
  • What is the quantization error (in mV) if
    Vin2.35V
  • Answer
  • LSB 5/(28) 0.0195V 19.5mV
  • Vout DoutLSB 12019.5mV2.34V
  • QE Vout Vin 2.35V-2.34V 10mV

9
68HC11 A/D Converter
8-bit resolution (256 bit levels) 8 channels
Port E
10
Port E
  • 8-bit
  • Address 100A
  • Multi-Function
  • Digital Input Port
  • Analog Input Port (Built-in A/D)

11
Port E - 100A Data Register

I
I
I
I
I
I
I
I
Bits
OOutput I Input BBidirectional
12
Using the 68HC11 A/D Converter
  • Power-up the A/D System
  • Configure the A/D conversion system
  • Two modes
  • Single channel scan
  • Continuous channel scan
  • Channel control
  • Conversion on a single channel
  • Conversion on four channels
  • Start the A/D conversion
  • Poll the conversion completion flag (CCF)
  • Read the result
  • Save the result

13
Reading the Results
  • Load the ADC result from the
  • ADC Input Registers
  • ADR1 1031
  • ADR2 1032
  • ADR3 1033
  • ADR4 1034

14
Power the A/D Converter
Option Register 1039 System Configuration
Options
CR1
DLY
N/A
CME
IRQE
CSEL
ADPU
CR2
Bits
ADPU A/D Power-up 0 A/D not
powered up 1 A/D powered up (need
at least 100uS for process to stabilize)
CSEL Clock select 0 Use
external clock (E-clock) for power up (default)
1 Use internal clock for power up
CB 11000000
15
Configure the ADCA/D Control/Status Register
ADCTL Register 1030 A/D Control/Status
Register
CB
MULT
CC
CD
SCAN
N/A
CCF
CA
Bits
SCAN Continuous Scan Control 0
One cycle of four conversions each time ADCTL is
written 1 Continuous conversions
MULT Multiple Channel/Single Channel Control
0 perform four consecutive
conversions on a single channel 1
perform four conversions on four channels
consecutively
16
A/D Control/Status Register Single Channel Mode
ADCTL Register 1030 A/D Control/Status
Register
CB
MULT
CC
CD
SCAN
N/A
CCF
CA
Bits
CD,CC,CB,CA Channel Conversion Select Bits

Mult0
17
A/D Control/Status Register Multiple Channel Mode
ADCTL Register 1030 A/D Control/Status
Register
CB
MULT
CC
CD
SCAN
N/A
CCF
CA
Bits
CD,CC,CB,CA Channel Conversion Select Bits

Mult1
18
A/D Control/Status RegisterConversion Completion
Flag
ADCTL Register 1030 A/D Control/Status
Register
CB
MULT
CC
CD
SCAN
N/A
CCF
CA
Bits
CCF A/D Conversion Complete Flag 0
Conversion not complete 1
Conversion complete. Set when all four A/D
result registers contain
valid conversions
19
Project Pseudo-Code
  • Power ADC using Internal Clock
  • Option (1039) ? 11000000
  • Delay Loop
  • N10
  • For I 1 to N
  • Next I
  • Configure ADC for
  • Single channel, single scan, PE0
  • Set scan0,mult0, Cd,Cc,Cb,Ca to 0000
  • ADCTL ? 00000000 This starts conversion

20
Project Pseudo-Code
  • Wait for CCF Flag
  • Repeat
  • Until CCF1
  • Read Result
  • A ? ADR1 (1031)
  • Save Result
  • Dout ? A

21
TPS Quiz
22
Initialization Examples
  • Single channel, single scan
  • Set scan0,mult0
  • Set Cd,Cc,Cb,Ca to select channel
  • Single channel, continuous scan
  • Set scan1,mult0
  • Set Cd,Cc,Cb,Ca to select channel

23
Initialization Examples
  • Multiple channel, single scan
  • Set scan0,mult1
  • Set Cd,Cc,Cb,Ca to select channel pair
  • Either PE0-PE3 or PE4-PE7
  • Multiple channel, continuous scan
  • Set scan1,mult1
  • Set Cd,Cc,Cb,Ca to select channel pair
  • Either PE0-PE3 or PE4-PE7

24
Pseudo-codeMulti-Channel Mode68HC11 A/D
Converter
  • Initialize A/D conversion system
  • Power A/D system
  • Enable A/D system This starts A/D conv.
  • Repeat
  • Until CCF1
  • For n 1 to 4
  • A ? ADR(n) Read ADC register n
  • Out(n) ? A Save conversion
  • Next n

25
A/D Subroutine
  • Define Symbols
  • Assume standard equates
  • OPTION EQU 1039
  • ADCTL EQU 1030
  • ADR1 EQU 1031
  • ADPU EQU 11000000
  • ADC EQU 00010100 Single scan-multi
    channel

  • PE4-PE7
  • CCF EQU 10000000 CCF
  • Delay EQU 1010 this is the delay
  • N EQU 04

26
A/D Subroutine
  • Initialize the Interface
  • X contains the address of the output
    string
  • B contains the number of values to
    collect
  • Org Program
  • Start LDY Option Load address of A/D option
    register
  • BSET 0,Y ADPU This power ups the
    A/D
  • LDAA Delay
  • Loop DECA
  • BNE Loop This delay allows the A/D
    to power up
  • LDAA PE0 This are the bits to
    configure the ADCTL
  • STAA ADCTL Configure ADCTL and
    start conversion

27
A/D Subroutine
  • LDY ADCTL This is the address of
    the ADCTL
  • L0 BRCLR 0,Y CCF L0 Stay here until CCF
    is set
  • LDAB N
  • L1 LDY ADR1
  • LDX OUT
  • LDAA 0,Y This will load the
    first conversion
  • STAA 0,X Save this
    conversion
  • INX Point to next
    character
  • INY
  • DECB
  • BNE L1
  • RTS Return from
    subroutine
  • ORG Data
  • OUT RMB 4

28
Maximum Sampling Rate
  • Nyquist Theorem Must sample at twice the
    maximum frequency of the input signal to
    reconstruct the signal from the samples.
  • 68HC11 Conversion time
  • 32 clock cycles 32Tc
  • Maximum signal period 1/(2Fmax)
  • 32Tc 1/2Fmax ? Fmax 1/(64Tc)
  • Given Fclk2Mhz ? Tc 0.5uS?
  • Fmax31.5KHz

29
Aperture Time
  • The amount of time needed by ADC to sample the
    analog input is known as the aperture time.
    In the 68HC11, 12 cycles are needed to convert
    Vin.
  • If the input signal changes considerable during
    the sample, we will see Aperture Jitter, signal
    noise, or signal error due to the uncertainty
    of the input signal.

30
TPS Quiz
Write a Comment
User Comments (0)
About PowerShow.com