Title: Pressure measurements at high temperature: open issues and solutions
1Pressure measurements at high temperature open
issues and solutions
- Peter I. Dorogokupets
- Institute of the Earths Crust SB RAS, Irkutsk,
Russia - dor_at_crust.irk.ru
2Acknowledgments
- Artem R. Oganov Lab. of Crystallography, ETH
Zurich, Switzerland a.oganov_at_mat.ethz.ch - Agnes Dewaele CEA/DPTA Bruyeres-le-Chatel,
France agnes.dewaele_at_cea.fr - Paul Loubeyre CEA/DPTA Bruyeres-le-Chatel,
France - This work was supported by the Russian Foundation
for Basic Research, Grant No. 05-05-64491.
3(No Transcript)
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8(No Transcript)
9Outline
- Intro.
- Thermodynamics EoS formulation
- Best form of the ruby scale
- EoS and thermodynamic behavior of Au, C, MgO,
NaCl B1, NaCl B2, e-Fe - Cross-check of EoS
- Conclusion
10Intro
- Dorogokupets P.I., Oganov A.R. Ruby pressure
scale revision and alternatives // in
Proceedings Joint 20th AIRAPT 43th EHPRG Int.
Conf. on High Pressure Science and Technology,
June 27 to July 1, 2005, Karlsruhe, Germany
(Forschungszentrum Karlsruhe, Karlsruhe, 2005). - ??????????? ?.?., ?????? ?.?. ????????? ?????????
Al, Au, Cu, Pt, Ta ? W ? ?????????????? ?????????
????? ???????? // ???. 2006. ?. 410. ? 2.
239243. Dorogokupets P.I., Oganov A.R. Equations
of State of Al, Au, Cu, Pt, Ta, and W and Revised
Ruby Pressure Scale // Doklady Earth Scinces.
2006. V. 410. 1091-1095. - Dewaele A., Loubeyre P., Occelli F., Mezouar M.,
Dorogokupets P.I., Torrent M. Quasihydrostatic
equation of state of iron above 2 Mbar // Phys.
Rev. Letters. 2006. V. 97. Art. No. 215504. - Dorogokupets P.I., Oganov A.R. Ruby, metals, and
MgO as alternative pressure scales A
semiempirical description of shock-wave,
ultrasonic, x-ray, and thermochemical data at
high temperatures and pressures // Phys. Rev. B
2007
11Thermodynamics
- U0 is the reference energy
- E(V) is the cold part
- Eqh(V,T) is the quasiharmonic part
- Eanh(V,T) is the intrinsic anharmonicity
- Eel(V,T) is the electronic contribution
- Edef(V,T) is the thermal defects
12Cold energy (Vinet form)
13(No Transcript)
14Kutin modelsee Kutin et al.Rus. J. Phys.
Chem. 72, 1567, 1998
15Intrinsic anharmonicity(Oganov, Dorogokupets,
2004)
16Electronic contribution(Zharkov, Kalinin, 1971)
Thermal defects contribution
17Thermodynamic functions
- S (?F/?T)V, EF TS,
- P (?F/?V)T, HEPV, GFPV,
- CV (?E/?T)V, KT V(?P/?V)T,
- (?P/?T)V aKT,
- CPCVa2TVKT, KSKTVT(aKT)2/CV,
-
18Hugoniot pressure
19We use input data are unbiased by calibration
- 22 parameters to fit!
- At zero pressure
- Heat capacity and enthalpy
- Thermal expansion coefficient or volume
- Adiabatic bulk modulus (from ultrasonic
measurements) - Temperature interval
- from 10 K to melting temperature
- At high P-T
- Shock wave data
20Room T isotherms obtained after fitting
Compared with static compression data with Mao 86
ruby calibration (A1904, B7.665)
Compared with static compression data with new
ruby calibration (A1885, B10.4)
21Best ruby pressure scale
Aleksandrov form
22Use of all available data
- At zero pressure
- Heat capacity and enthalpy
- Thermal expansion coefficient or volume
- Adiabatic bulk modulus (from ultrasonic
measurements) - Temperature interval
- from 10 K to melting temperature
- At high P-T
- Shock wave data
- PV and PVT measurements (at later stages of
refinement)
23Results
- With our formalism we carry out a simultaneous
processing of all the available measurements of
the Cp, a, V, Ks and KT at zero pressure, static
measurements of V on a room-temperature isotherm
and at higher temperatures, shock-wave data, and
calculate thermodynamic functions vs. T and P. - Ag, Al, Au, Cu, Pt, Ta, W, Mo, Pb, Fe, MgO,
diamond, NaCl EoS have been calculated.
24See Dorogokupets, Phys. Rev B, 2007
25Comparison of calculated EoS and thermodynamic
parameters with data
26Au, heat capacity
27Au, thermal expansion
28Au, bulk moduli
29Au, 300 KK0166.7 GPa, K'6
30Au, 300 KK0166.7 GPa, K'6
31Diamond, 300 K K0443.16 GPa, K'3.777
32Diamond, heat capacity
33Diamond, bulk moduli
34iron
35iron
36MgO, 300 K K0160.3 GPa, K'4.18
37MgO, bulk moduli
38MgO, bulk moduli
39MgO, K0160.3 GPa, K'4.18
40MgO, Zhang data fittedK0161 GPa, K'1.84
41NaCl B1, RT-isothermK023.9 GPa, K'5.13
42NaCl B1
43NaCl B1
44NaCl B1, bulk moduli
45NaCl B1, bulk moduli
46NaCl B2, RT-isothermK037.04 GPa, K'4.99
47NaCl B2, RT-isothermK037.04 GPa, K'4.99
48Cross-check between EoS at high T
- Two materials are compressed together in a high
pressure/high temperature apparatus and their V
is measured - Pressure given by their EoS are compared
- If same pressure, validation of the EoS
49Comparison NaCl B2 and e-Fe
?Within 7GPa
50Au-MgO Inoue et al. (2006) Phys. Chem. Minerals
33, 106.
51K. Litasov et al. EPSL 238 (2005) 311
52(No Transcript)
53Fei et al. (2004). PEPI, 143-144, 515
MgO and Au EoS are within 1 GPa at Plt30 GPa,
Tlt2200K
54Hirose et al. (2006). Geophys. Res. Lett. 33,
L01310.
MgO and Au EoS are within 3 GPa at Plt120 GPa,
Tlt2300K
55Conclusions
- We have proposed a ruby pressure scale based on
precise measurements of Dewaele et al. 2004,
2006. - The obtained ruby pressure scale agrees within 2
with the most recent ruby pressure scales. - Our EoSs of Al, Au, Cu, Pt, Ta, W, MgO, C, NaCl
are consistent with shock-wave and X-ray data and
with numerous measurements of the heat capacity,
volume, adiabatic bulk moduli, etc. at zero
pressure. - The EoSs of Au and Pt agree with the EoSs of Ag
and MgO, constructed on independent measurements.
- The obtained P-V-T EoSs enable consistent
pressure measurement using EoSs of any of the
reference substances (Ag, Al, Au, Cu, Pt, Ta, W,
MgO). This solves problems of inconsistency
between different pressure scales and enables
accurate pressure measurement at elevated
temperatures, where the ruby scale cannot be
used.
56(No Transcript)