Oxidation/Reduction - PowerPoint PPT Presentation

1 / 91
About This Presentation
Title:

Oxidation/Reduction

Description:

Oxidation/Reduction Chapter 20 Corrosion Iron rusts in acidic solns (not above pH=9) Water needs to be present Salts accelerate the process O2 + 4H+ + 4e- 2H2O Fe ... – PowerPoint PPT presentation

Number of Views:443
Avg rating:3.0/5.0
Slides: 92
Provided by: John4366
Category:

less

Transcript and Presenter's Notes

Title: Oxidation/Reduction


1
Oxidation/Reduction
  • Chapter 20

2
Two Types of Chemical Rxns
  • Exchange of Ions no change in charge/oxidation
    numbers
  • Acid/Base Rxns
  • NaOH HCl

3
Two Types of Chemical Rxns
  • Precipitation Rxns
  • Pb(NO3)2(aq) KI(aq)
  • Dissolving Rxns
  • CaCl2(s) ?

4
Two Types of Chemical Rxns
  • Exchange of Electrons changes in oxidation
    numbers/charges
  • Fe(s) CuSO4(aq) ? FeSO4(aq) Cu(s)
  • Remove spectator ions
  • Fe Cu2 ? Fe2 Cu
  • Protons
  • Electrons

5
Review of Oxidation Numbers
  • Oxidation numbers the charge on an ion or an
    assigned charge on an atom.
  • Al Cl2 P4
  • Mg2 Cl-

6
Review of Oxidation Numbers
  • Calculate the oxidation numbers for
  • HClO Cr3
  • S8 Fe2(SO4)3
  • Mn2O3 SO32-
  • KMnO4 NO3-
  • HSO4-

7
Oxidation
  • Classical Definition addition of oxygen
  • Modern Definition an increase in oxidation
    number
  • Fe O2 ? Fe2O3
  • CO O2 ? CO2
  • CH3CH2OH ? CH3CHO ? CH3COOH

8
Oxidation
  • Fe O2 ? (limited oxygen)
  • Fe O2 ? (excess oxygen)

9
Oxidation
  • C O2 ? (limited oxygen)
  • C O2 ? (excess oxygen)

10
Reduction
  • Classical addition of hydrogen
  • Modern decrease (reduction) in oxidation number
  • N2 3H2 ? 2NH3 (Haber process)
  • R-CC-R H2 ?
  • H H
  • (unsaturated fat) (saturated fat)

11
Oxidizing/Reducing Agents
  • Oxidation and Reduction always occur together.
  • Oxidizing Agents
  • Get reduced
  • Gain electrons
  • Reducing Agents
  • Get oxidized
  • Lose electrons

12
Oxidizing/Reducing Agents
  • 0 2
  • Cu O2 ? CuO
  • 0 -2

Got oxidized, reducing agent
Got reduced, oxidizing agent
13
(No Transcript)
14
  • Identify the Oxidizing/Reducing Agents in the
    following (Calculate the ox. numbers also).
  • Cu S8 ? Cu2S
  • H2 O2 ? H2O
  • Cu AgNO3 ? Cu(NO3)2 Ag
  • H2O Al MnO4- ? Al(OH)4- MnO2

15
  • Identify the Oxidizing/Reducing Agents in the
    following (Calculate the ox. numbers also).
  • Al O2 ? Al2O3
  • Li N2 ? Li3N
  • Cu(NO3)2 Fe ? Fe(NO3)3 Cu
  • KMnO4 FeSO4? Fe2(SO4)3 Mn K

16
Balancing Redox Reactions
  • Half-Reaction Method
  • Break eqn into oxidation half and reduction half
  • Easy Examples
  • Al Fe2 ? Fe Al3
  • Cu Zn2 ? Cu2 Zn
  • Mg Na ? Mg2 Na

17
Balancing Redox Reactions
  • Whats really happening
  • Cu2 Zn ? Cu Zn2

18
(No Transcript)
19
Balancing Redox Reactions
  • Steps for more complicated examples
  • Balance all atoms except H and O
  • Balance charge with electrons
  • Balance O with water
  • Balance H with H
  • 5. (Add OH- to make water in basic solutions)

20
(No Transcript)
21
Balancing Redox Reactions
  • Example 1
  • MnO4- C2O42- ? Mn2 CO2
  • 1. Separate into half reactions
  • MnO4- ? Mn2
  • C2O42- ? CO2

22
Balancing Redox Reactions
  • MnO4- ? Mn2
  • 7
    2
  • 5e- MnO4- ? Mn2
  • 5e- MnO4- ? Mn2 4H2O
  • 8H 5e- MnO4- ? Mn2 4H2O

23
Balancing Redox Reactions
  • C2O42- ? CO2
  • C2O42- ? 2CO2
  • 3
    4 (1 e- per carbon)
  • C2O42- ? 2CO2 2e-

24
Balancing Redox Reactions
  • C2O42- ? 2CO2 2e- (X
    5)
  • 8H 5e- MnO4- ? Mn2 4H2O (X 2)
  • 5C2O42- ? 10CO2 10e-
  • 16H 10e- 2MnO4- ? 2Mn2 8H2O
  • 16H5C2O42-2MnO4- ? 2Mn2 10CO2 8H2O

25
Balancing Redox Reactions (Acidic Solutions)
  • Cr2O72- Cl- ? Cr3 Cl2
  • 14 H Cr2O72- 6Cl- ? 2Cr3 3Cl2 7H2O
  • Cu NO3- ? Cu2 NO2
  • Cu 4H 2NO3- ? Cu2 2NO2 2H2O
  • Mn2 BiO3- ? Bi3 MnO4-
  • 14H 2Mn2 5BiO3- ? 5Bi3 2MnO4- 7H2O

26
Balancing Redox Reactions (Basic Solutions)
  • Add OH- AT THE VERY END ONLY!!!!!
  • NO2- Al ? NH3 Al(OH)4-
  • 5H2O OH- NO2- 2Al ? NH3 2Al(OH)4-
  • Cr(OH)3 ClO- ? CrO42- Cl2
  • 2Cr(OH)3 6ClO- ? 2CrO42- 3Cl2 2OH- 2H2O

27
  • Balance in Both Acidic and Basic Solutions
  • F- MnO4- ? MnO2 F2
  • HNO2 H2O2 ? O2 NO
  • H is 1

28
  • F- MnO4- ? MnO2 F2
  • 8H 6F- 2MnO4- ? 2MnO2 3F2
    4H2O
  • 4H2O 6F- 2MnO4- ? 2MnO2 3F2
    8OH-
  • HNO2 H2O2 ? O2 NO
  • 2HNO2 H2O2 ? O2 2NO 2H2O

29
Voltaic (Galvanic) Cells
  • Voltaic(Galvanic) Cells redox reactions that
    produce a voltage
  • Spontaneous reactions (DGlt0)
  • Voltage of the cell (Eocell) is positive
  • Batteries
  • Electrolytic cells redox reactions that must
    have a current run through them.
  • DGgt0 and Eocell is negative.
  • Often used to plate metals

30
Voltaic (Galvanic) Cells
  • History
  • Galvani (died 1798) uses static electricity to
    move the muscles of dead frogs
  • Volta (1800) Created the first battery

31
Voltaic (Galvanic) Cells
  • Voltaic cell
  • Anode Oxidation site
  • Cathode Reduction site (RC cola)
  • Salt bridge completes the circuit

32
Voltaic (Galvanic) Cells
  • Cell Notation
  • Zn Zn2(aq) Cu2(aq) Cu
  • Anode Zn ? Zn2 2e-
  • Cathode Cu2 2e- ? Cu
  • Cell Cu2 Zn ? Cu Zn2

33
Voltaic (Galvanic) Cells
34
Hydrogen Electrode
  • Standard Electrode
  • Voltage(potential) 0 Volts
  • 2H(aq) 2e- ? H2(g) 0 volts
  • H2(g) ? 2H(aq) 2e- 0 volts
  • 3. Often used in electrodes (like pH)

35
(No Transcript)
36
Standard Reduction Potentials
  • Rules
  • Flipping an equation changes the sign of E
  • Multiplying an equation does not change the
    magnitude of E

37
Calculating Cell Potential
  • A cell is composed of copper metal and Cu2(aq)
    on one side, and zinc metal and Zn2(aq) on the
    other. Calculate the cell potential.
  • Zn2 2e- ? Zn -0.76 V
  • Cu2 2e- ? Cu 0.34 V
  • flip the zinc equation
  • Zn ? Zn2 2e- 0.76 V
  • Cu2 2e- ? Cu 0.34 V
  • Zn Cu2 ? Zn2 Cu 1.10 V

38
  • What is the cell emf of a cell made using Cu and
    Cu2 in one side and Al and Al3 in the other?
    Write the complete cell reaction.
  • ANS 2.00 V

39
  • Calculate the standard emf for the following
    reaction. Hint break into half-reactions.
  • 2Al(s) 3I2(s) ? 2Al3(aq) 6I-(aq)

40
  • A voltaic cell is based on the following half
    reactions.
  • In(aq) ? In3(aq) 2e-
  • Br2(l) 2e- ? 2Br-(aq) 1.06 V
  • If the overall cell voltage is 1.46 V, what is
    the reduction potential for In3?

41
  • Calculate the standard emf for the following
    reaction.
  • Cr2O72- 14H 6I- ? 2Cr3 3I2 7H2O

42
  • Two half reactions in a voltaic cell are
  • Zn2(aq) 2e- ? Zn(s)
  • Li(aq) e- ? Li(s)
  • Calculate the cell emf.
  • Which is the anode? Which is the cathode?
  • Which electrode is consumed?
  • Which electrode is positive?
  • Sketch the cell, indicating electron flow.

43
  • Given the following half-reactions
  • Pb2 2e-? Pb
  • Ni2 2e- ? Ni
  • Calculate the cell potential (Eo).
  • Label the cathode and anode.
  • Identify the oxidizing and reducing agents.
  • Which electrode is consumed?
  • Which electrode is plated?
  • Sketch the cell, indicating the direction of
    electron flow.

44
Strengths of Oxidizing and Reducing Agents
  • larger the reduction potential, stronger the
    oxidizing agent
  • Wants to be reduced, can oxidize something else.
  • lower the reduction potential, stronger the
    reducing agent
  • Would rather be oxidized

45
  • F2 2e- ? 2F- 2.87 V
  • Stronger Cl2 2e- ? 2Cl- 1.36 V
  • Oxidizing .
  • Agents .
  • .
  • .
  • .
  • Li e- ? Li -3.05V

46
Example 1
  • Which of the following is the strongest oxidzing
    agent? Which is the strongest reducing agent?
  • NO3- Cr2O72- Ag

47
  • Which of the following is the strongest reducing
    agent? Which is the strongest oxidizing agent?
  • I2(s) Fe(s) Mn(s)

48
  • Can copper metal (Cu(s)) act as an oxidizing
    agent?

49
Spontaneity
Voltaic Cells Electrolytic Cells
Positive emf Spontaneous Can produce electric current Batteries Negative emf Not spontaneous Must pump electricity in Electrolysis
50
Example 1
  • Are the following cells spontaneous as written?
  • Cu 2H ? Cu2 H2
  • Cl2 2I- ? 2Cl- I2
  • I2 5Cu2 6H2O ? 2IO3- 5Cu 12H
  • Hg2 2I- ? Hg I2

51
EMF and DGo
  • DG -nFE
  • n number of electrons transferred
  • E Cell emf
  • F 96,500 J/V-mol (Faradays Constant)
  • Positive Voltage gives a negative DG (spont)

52
  • Calculate the cell potential and free energy
    change for the following reaction
  • 4Ag O2 4H ? 4Ag 2H2O
  • ANS 0.43 V, -170 kJ/mol

53
  • Calculate DG and the EMF for the following
    reaction. Also, calculate the K.
  • 3Ni2 2Cr(OH)3 10OH- ? 3Ni 2CrO42- 8H2O
  • ANS 87 kJ/mol, -0.15 V, 6 X 10-16

54
EMF and K
  • DGo -RTlnK (DGo -nFEo)
  • -nFEo -RTlnK
  • lnK nFEo (assume 298 K)
  • RT
  • log K nEo
  • 0.0592

55
Example 1
  • Calculate DG, cell voltage and the equilibrium
    constant for the following cell
  • O2 4H 4Fe2 ? 4Fe3 2H2O
  • ANS -177 kJ/mol, 0.459 V, 1 X 1031

56
Example 2
  • If the equilibrium constant for a particular
    reaction is 1.2 X 10-10, calculate the cell
    potential. Assume n 2.

57
Concentration Cells Nernst Equation
  • DG DGo RT lnQ
  • -nFE -nFEo RT lnQ
  • E Eo - RT lnQ (assume 298 K)
  • nF
  • E Eo - 0.0592 log Q
  • n
  • Can adjust the voltage of any cell by changing
    concentrations

58
Using the Nernst Eqn
  • Suppose in the following cell, the concentration
    of Cu2 is 5.0 M and the concentration of Zn2 is
    0.050 M. Calculate the cell voltage.
  • Zn(s) Cu2(aq)?Zn2(aq) Cu(s) 1.10 V

59
  • E Eo - 0.0592 V log Q
  • n
  • E 1.10V - 0.0592 V log CuZn2
  • 2 Cu2Zn
  • E 1.10V - 0.0592 V log Zn2
  • 2 Cu2
  • E 1.10V - 0.0592 V log 0.050
  • 2 5.0
  • E 1.16 V

60
Example 1
  • Calculate the emf at 298 K generated by the
    following cell (Eo 0.79 V) where Cr2O72- 2.0
    M, H 1.0 M, I-1.0 M and Cr3 1.0 X
    10-5M.
  • Cr2O72- 14H 6I- ? 2Cr3 3I2 7H2O
  • ANS 0.89 V

61
Example 2
  • Calculate the emf at 298 K generated by the
    following cell (Eo 2.20 V) where Al3 0.004
    M and I- 0.010 M.
  • 2Al(s) 3I2(s) ? 2Al3(aq) 6I-(aq)
  • ANS 2.36 V

62
Example 3
  • If the voltage of a Zn-H cell is 0.45 V at 298 K
    when Zn21.0 M and PH21.0 atm, what is the
    concentration of H? Note that atm can be used
    just like molarity.
  • Zn(s) 2H(aq) ? Zn2(aq) H2(g)
  • ANS 5.2 X 10-6M

63
Example 4
  • What pH is required if we want a voltage of 0.542
    V and Zn20.10 M and PH21.0 atm?
  • Zn(s) 2H(aq) ? Zn2(aq) H2(g)
  • ANS 5.84 X 10-5M, pH 4.22

64
Batteries
  • Lead Acid Battery
  • 12 Volt DC
  • Discharges when starting the car, recharges as
    you drive (generator). Running reaction
    backward.

PbO2(s) Pb(s) 2HSO4-(aq) 2H(aq) ?2PbSO4(s)
2H2O(l)
65
Alkaline Batteries
  • Basic
  • Zinc can acts as the anode
  • 2MnO2(s)2H2O(l)2e-?2MnO(OH)(s) 2OH-(aq)
  • Zn(s) 2OH-(aq)? Zn(OH)2(s) 2e-
  • Rechargable uses Ni-Cd

66
Corrosion
  • Iron rusts in acidic solns (not above pH9)
  • Water needs to be present
  • Salts accelerate the process
  • O2 4H 4e- ? 2H2O
  • Fe ? Fe2 2e-
  • (The Fe2 eventually goes to Fe3, Fe2O3)

67
(No Transcript)
68
Preventing Corrosion
  • Paint
  • Sometimes oxide layer(Al2O3)
  • Galvanizing (coating Fe with Zn)
  • Fe2 2e- ? Fe E -0.44 V
  • Zn2 2e- ? Zn E -0.76 V
  • Zinc is more easily oxidized
  • (Zn ? Zn2 2e- E 0.76 V)

69
(No Transcript)
70
  • Cathodic protection (sacrificial anode)
  • Magnesium used in water pipes
  • Magnesium rods used in hot water heaters

71
  • An iron gutter is nailed using aluminum nails.
    Will the nail or the iron gutter corrode first?
  • Fe2 2e- ? Fe E -0.44 V
  • Al3 3e- ? Al E -1.66 V
  • Al will corrode first (Al ? Al3 3e- ,E
    1.66 V)

72
  • Which of the following metals could provide
    cathodic protection to iron
  • Al Cu Ni Zn

73
Electrolysis and Electroplating
  • Plating of silver on silverware

74
Electrolytic cells
  • Must run electricity through them
  • Running a voltaic cell backwards
  • Used to produce sodium metal
  • Na(aq) e- ? Na (s) -2.71 V
  • Cl2(g) 2e- ? 2Cl-(aq) 1.36 V

75
  • As a voltaic cell
  • 2Na(s) ? 2Na(aq) 2e- 2.71 V
  • Cl2(g) 2e- ? 2Cl-(aq) 1.36 V
  • 2Na(s) Cl2 (s)?2NaCl(aq) 4.07 V
  • As an electrolytic cell
  • 2Na(aq) 2e- ? 2Na (s) -2.71 V
  • 2Cl-(aq) ? Cl2(g) 2e- -1.36 V
  • 2NaCl(aq) ? 2Na(s) Cl2 (s) -4.07 V

76
Quantitative Electrolysis
  • Electric current Amperes
  • 1 ampere 1Coloumb I Q
  • 1 second t
  • 1 F 96,500 C/mol
  • One mole of electrons has a charge of 96,500 C
  • One electron has a charge of 1.602 X 10-19 C

77
  • What mass of aluminum can be produced in 1.00
    hour by a current of 10.0 A?
  • Al3 3e- ? Al

78
  • Moles of e- (36,000C)(1 mol e-) 0.373 mol e-
  • (96,500 C)
  • Al3 3e- ? Al
  • 0.373 mol
  • Al3 3e- ? Al
  • 0.373 mol 0.124 mol Al ? 3.36 g Al

79
Example 2
  • What mass of magnesium can be produced in 4000 s
    by a current of 60.0 A?
  • Mg2 2e- ? Mg
  • ANS 30.2 g Mg

80
  • What current is required to plate 6.10 grams of
    gold in 30.0 min?
  • Au3 3e- ? Au

81
  • How long would it take to plate 50.0 g of
    magnesium from magnesium chloride if the current
    is 100.0 A?

82
  • Given the following
  • Ag(aq) e- ? Ag(s) 0.799V
  • Fe3(aq) e- ? Fe2(aq) 0.771 V
  • Write the reaction that occurs.
  • Calculate the standard cell potential.
  • Calculate DGrxn for the reaction from the cell
    potential.
  • Calculate K for the reaction.
  • Predict the sign of DSrxn.
  • Sketch the cell, labeling anode, cathode, and the
    direction of electron flow.

83
  • Do SO3 and SO32- have the same molecular shape?
    How about SO2?

84
  • 16. a) Not redox
  • b) I oxidized (-1 to 5) , Cl reduced (1 to
    -1)
  • c) S oxidized (4 to 6), N reduced (5 to 2)
  • d) Br oxidized (-1 to 0), S reduced (6 to 4)
  • 20 a. Mo3 3e- ? Mo
  • b. H2O H2SO3 ? SO42- 2e- 4H
  • c. 4H 3e- NO3- ? NO 2H2O
  • d. 4H 4e- O2 ? 2H2O
  • e. 4OH- Mn2 ? MnO2 2e- 2H2O
  • f. 5OH- Cr(OH)3 ? CrO42- 3e- 4H2O
  • g. 2H2O 4e- O2 ? 4OH-

85
  • 22. a. 3NO2- Cr2O72- 8H ? 3NO3- 2Cr3
    4H2O
  • 2HNO3 2S H2O ? 2H2SO3 N2O
  • 2Cr2O72- 3CH3OH 16H ? 4Cr3 3HCO2H 11H2O
  • 2MnO4- 10Cl- 16H ? 2Mn2 5Cl2 8H2O
  • NO2- 2Al 2H2O ? NH4 2AlO2-
  • H2O2 2ClO2 2OH- ? O2 2ClO2- 2H2O

86
  • 26. a) Al oxidzed, Ni2 reduced
  • b) Al ? Al3 3e- Ni2 2e- ? Ni
  • c) Al anode, Ni cathode
  • d) Al negative, Ni positive
  • e) Electrons flow towards the Ni electrode
  • f) Cations migrate towards Ni electrode

87
  • a) Cd is anode, Pd is cathod
  • b) Ered 0.63 V
  • 36 a) 2.87 V b) 3.21 V c) -1.211 V d) 0.636V
  • 38 a) 1.35 V b) 0.29 V

88
  • 41 a) Mg b) Ca c) H2 d) H2C2O4
  • 42 a) Cl2 b) Cd2 c) BrO3- d) O3
  • 44. a) Ce3 (weak reductant)
  • b) Ca (strong reductant)
  • c) ClO3- (strong oxidant)
  • d) N2O5 ( oxidant)
  • a) H2O2 strongest oxidizing agent
  • b) Zn strongest reducing agent
  • 50.a) 3.6 X 108 b) 1041 c) 10103
  • 52. 0.292 V
  • 54 a) 4 X 1015 b) 2 X1065 c) 7.3 X1049

89
  • 62a) 2.35 V b) 2.48 V c) 2.27 V
  • 64. a) 0.771 V b) 1.266 V
  • 88. a) 173 g b) 378 min
  • E 1.10 V Wmax -212 kJ/mol Cu
  • W -1.67 X 105 J

90
  • 1a) 14H Cr2O72- 3Fe ? 2Cr3 3Fe2
    7H2O
  • 2Br- F2 ? 2F- Br2
  • 4OH- 2Cr(OH)3 ClO3- ? 2CrO42- Cl-
    5H2O
  • 2b) 0.463 V c) -89.4 kJ/mol d) 4.4 X 1015
  • e) 0.442 V
  • F2 is str. oxidizing agent, Li, str. reducing
    agent
  • b) 78 minutes c) 1.19 g d) 0.695 g

91
  • In a measuring cup
  • 5 mL of oil
  • 5 mL of ethanol
  • 5 mL of 50 NaOH solution (approximately 30
    drops).
  • Place in beaker
  •  Heat the mixture, stirring with popsicle stick.
  • Remove from heat. After 5 minutes, add 10 mL of
    saturated salt solution.
  • Collect some of the solid and test the pH of your
    soap. Compare the pH to that of commercial bar
    soap and liquid detergent solution. See if it
    lathers.
Write a Comment
User Comments (0)
About PowerShow.com