Image Restoration - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Image Restoration

Description:

Chapter 6 Image Restoration Digital Image Processing Instructor: Dr. Cheng-Chien Liu Department of Earth Sciences National Cheng Kung University Last updated: 10 ... – PowerPoint PPT presentation

Number of Views:94
Avg rating:3.0/5.0
Slides: 23
Provided by: Dr757
Category:

less

Transcript and Presenter's Notes

Title: Image Restoration


1
Chapter 6
  • Image Restoration
  • Digital Image Processing
  • Instructor Dr. Cheng-Chien Liu
  • Department of Earth Sciences
  • National Cheng Kung University
  • Last updated 10 October 2003

2
Introduction
  • Image restoration
  • Use objective criteria and prior knowledge
  • cf. image enhancement ? subjective criteria
  • Two cases need image restoration
  • Degradation ? gray value altered
  • Distortion ? pixel shifted
  • Geometric restoration (image registration)
  • Aerial photographs

3
Geometric restoration
  • Source of geometric distortion
  • Lens (Fig 6.1)
  • Irregular movement (Fig 6.2)
  • Two-stage operation
  • Spatial transformation
  • x Ox(x, y) c1x c2y c3xy c4 y Oy(x,
    y) c5x c6y c7xy c8
  • Four tie points ? c1, , c8
  • Grey level interpolation
  • Simple way g(x, y) ax by cxy d
  • Fig 6.3
  • Example 6.1

4
Linear degradation
  • Output image
  • g(a, b) ? -??? -?? f(x, y) h(x, y, a, b) dxdy
  • The point spread function h(x, y, a, b)
  • Shift invariant
  • h(x, y, a, b) h(x, y, a - x, b - y)
  • g(a, b) ? -??? -?? f(x, y) h(x, y, a - x, b -
    y) dxdy
  • g depends on the relative position rather than
    actual position
  • G(u, v) F(u, v) H(u, v)
  • For discrete images
  • g(i, j) Sk1NSl1Nf(k, l)h(k, l, i, j)
  • g H f

5
The point spread function H
  • Problems of image restoration g H f
  • Given the degraded image g, recover the original
    undegraded image f
  • Obtain the information of H
  • From the knowledge of the physical process
  • e.g.diffraction, atmospheric turbulence, motion,
  • From some known objects on the image
  • Example 6.2
  • Expression of blurred image
  • Example 6.3
  • Derive H for the blurred image

6
The point spread function H (cont.)
  • Example 6.4
  • Calculate H for the blurred image
  • Example 6.5
  • Derive H for the degradation process of
    accelerating motion
  • Example 6.6
  • Asymptotic solution of Example 6.5
  • Example 6.7
  • Application of Example 6.6

7
The point spread function H (cont.)
  • Example 6.8
  • Calculate H from a bright straight line
  • Example 6.9
  • Calculate H from an edge
  • Example 6.10
  • Calculate H from an image device

8
Straightforward solution
  • If H is known
  • F(u, v) G(u, v) / H(u, v)
  • F(u, v) ? f(u, v)
  • However
  • Straightforward solution ? unacceptable poor
    results
  • H(u, v) 0 at some points ? G 0 ? 0/0 ?
    undetermined
  • If there is a small amount of noise ? G ? 0, even
    if H 0
  • For additive noise G(u, v) F(u, v) H(u, v)
    N(u, v) ? F(u, v) G(u, v) / H(u, v) - N(u, v)
    / H(u, v)
  • If H(u, v) ? 0 ? N(u, v) / H(u, v) ? ? (amplified
    noise)

9
Straightforward solution (cont.)
  • Avoiding the amplification of noise
  • Windowed version of the filter 1 / H
  • F(u, v) M(u, v) G(u, v) - M(u, v) N(u, v)where
    M(u, v) 1 / H(u, v) for u2 v2 ? w02
    M(u, v) 1 for u2 v2
    gt w02
  • Where w0 is chosen so that all zeroes of H(u, v)
    are excluded
  • Other windowing filters are also valid
  • Example 6.11
  • Application of inverse filtering to restore a
    motion blurred image

10
Indirect solution Wiener filter
  • Formal expression of the problem of IR
  • To identify f(r) which minimizes e2 ? Ef(r) -
    f(r)2
  • Where f(r) is an estimate of the original
    undegraded image f(r)
  • Shift invariant assumption
  • g(r) ? -??? -?? h(r - r?) f(r?)dr? v(r)
  • Where g(r), f(r) and h(r) are random fields, v(r)
    is noise field
  • Solution ? find the Wiener filter
  • If no imposed condition ? conditional expectation
    ? simulated annealing ? beyond our scope
  • Constraint f(r) is a linear function of g(r)
  • f(r) ? -??? -?? m(r, r?) g(r?)dr? ? we decide
    (B6.1)
  • f(r) ? -??? -?? m(r - r?) g(r?)dr? ? if the
    random fields are homogeneous
  • Identify the Wiener filter m(r) with which to
    convolve g(r?) ? f(r)

11
Fourier transfer of the Wiener filter
  • M(u, v) Fm(r) Sfg(u, v) / Sgg(u, v)
  • Proof in B6.3
  • Sfg(u, v) is the cross-spectral density of f and
    g
  • Sgg(u, v) is the spectral density of g
  • Extra assumption
  • f(r) and v(r) are uncorrelated
  • Ev(r) 0
  • ? Ef(r)v(r) Ef(r)Ev(r) 0

12
Fourier transfer of the Wiener filter (cont.)
  • Create Sgf
  • g(r) ? -??? -?? h(r - r?) f(r?)dr? v(r)
  • Rgf (s) Eg(r)f(r - s) ? -??? -?? h(r - r?)
    Ef(r?)f(r - s)dr? Ef(r - s)v(r) ? -???
    -?? h(r - r?) Rff(r? - r s)dr?
  • Sgf(u, v) H(u, v)Sff(u, v) ? (B6.4)
  • Sgg(u, v) Sff(u, v)H(u, v)2 Svv(u, v) ?
    (B6.4)
  • M(u, v)
  • M HSff / SffH2 Svv
  • M (1/H) H2 / H2 Svv/Sff

13
Fourier transfer of the Wiener filter (cont.)
  • Noise
  • If there is no noise ? Svv(u, v) 0 ? M 1/H
  • So the linear least square error approach simply
    determines a correction factor with which the
    inverse transfer function of the degradation
    process has to be multiplied before it is used as
    a filter, so that the effect of noise is taken
    care of.
  • Assumption
  • White noise Svv(u, v) constant Svv(0, 0)
    ? -??? -?? Rvv(x, y)dxdy
  • Ergodic noise Rvv(x, y) can be obtained from a
    single pure noise image i.e. when f(x, y) 0

14
Fourier transfer of the Wiener filter (cont.)
  • B6.1
  • If m(r - r?) satisfies Ef(r) - ? -??? -?? m(r -
    r?) g(r?)dr?g(s) 0, then it minimizes e2 ?
    Ef(r) - f(r)2
  • Example 6.12
  • g(r) ? -??? -?? h(t - r) f(t)dt ? G(u, v)
    H(u, v) F(u, v)
  • B6.2
  • Wiener-Khinchine theorem Rff(u, v) Ffg(u,
    v)2
  • B6.3
  • M(u, v) Fm(r) Sfg(u, v) / Sgg(u, v)

15
Fourier transfer of the Wiener filter (cont.)
  • B6.4
  • Sgg(u, v) Sff(u, v)H(u, v)2 Svv(u, v)
  • Example 6.13
  • Apply Wiener filtering to restore a motion
    blurred image

16
Problems of the straightforward solution
  • Straightforward solution
  • g Hf
  • Including noise g Hf v
  • Inversion f H-1g H-1v
  • H is an N2 ? N2 matrix
  • f, g and v are N2 ? 1 vectors
  • Problems
  • f is very sensitive to v (Example 6.14)
  • Formidable task to inverse an N2 ? N2 matrix

17
Circulant matrix
  • Definition
  • The circulant matrix D (Eq. 6.78)
  • Each column of a matrix can be obtained from the
    precious one by shifting all elements one place
    and putting the last element at the top
  • The block circulant matrix (Eq. 6.77)
  • Dw(k) l(k)w(k)
  • l(k) are the eigenvalues of D
  • l(k) ? d(0) d(M-1)exp2pjk/M
    d(M-2)exp2pj2k/M d(1)exp2pj(M-1)k/M
  • w(k) are the eigenvectors of D
  • w(k) ? 1, exp2pjk/M, exp2pj2k/M, ,
    exp2pj(M-1)k/MT

18
Inversion of the circulant matrix
  • Inversion of D
  • D WLW-1
  • W is formed by having the eigenvectors of D as
    columns
  • W-1(k, j) (1/M)exp-2pj/M ki (Example 6.15)
  • L is a diagonal matrix with the eigenvalues
    alone its diagonal.
  • D-1 (WLW-1)-1 (W-1)-1L-1W-1 WLW-1
  • Example 6.16 A case of M 3
  • Example 6.17 A case of M 4
  • Example 6.18
  • W ? WN ? WN ? W-1 Z ? WN-1 ? WN-1
  • WN (k, n) (N)-1/2 exp2pj/N kn
  • WN-1 (k, n) (N)-1/2 exp-2pj/N kn
  • Kronecker product ?

19
Inverting H Overcome one problem of the
straightforward solution
  • H is block circulant
  • g H f
  • g(i, j) Sk0N-1Sl0N-1h(k, l, i, j) f(k, l)
  • For a shift invariant point spread function
  • g(i, j) Sk0N-1Sl0N-1f(k, l) h(i-k, j-l)
  • Diagonalize H
  • H WLW-1 (B 6.5)
  • WN (k, n) (N)-1/2 exp2pj/N kn
  • WN-1 (k, n) (N)-1/2 exp-2pj/N kn
  • L(k, i) NH(kmod N, k/N) if i k
  • L(k, i) 0 if i ? k
  • H(m,n) (1/N) Sx0N-1Sy0N-1 h(x,y)e-2pj(mx/Nny/
    N)

20
Inverting H Overcome one problem of the
straightforward solution (cont.)
  • Transpose H
  • HT WLW-1 (B 6.6)
  • L means the complex conjugate of L
  • Example 6.19 Laplacian at a pixel position
  • D2f(i, j) f(i-1, j) f(i, j-1) f(i1, j)
    f(i, j 1) - 4f(i, j)
  • Example 6.20 Identify L to estimate D2f(i, j)
  • Example 6.21 Apply the Eq. of D2f(i, j) ? L
  • Example 6.22

21
Constrained matrix inversion filter Overcome
another problem
22
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com