Title: Calculus 11.1
1Hyperbolic Functions
Scottys Castle, Death Valley, CA
2Consider the following two functions
These functions show up frequently enough that
they have been given names.
3The behavior of these functions shows such
remarkable parallels to trig functions, that they
have been given similar names.
4Hyperbolic Sine
(pronounced cinch x)
Hyperbolic Cosine
(pronounced kosh x)
5Hyperbolic Tangent
tansh (x)
Hyperbolic Cotangent
cotansh (x)
Hyperbolic Secant
sech (x)
Hyperbolic Cosecant
cosech (x)
6Now, if we have trig-like functions, it follows
that we will have trig-like identities.
First, an easy one
7(This one doesnt really have an analogy in trig.)
8(No Transcript)
9Note that this is similar to but not the same as
There are several other identities in table A6.2
on page 619. I will give you a sheet with the
formulas on it to use on the test.
10Derivatives can be found relatively easily using
the definitions.
Surprise, this is positive!
11(quotient rule)
12All of the derivatives are similar to trig
functions except for some of the signs. Sinh,
Cosh and Tanh are positive. The others are
negative
13Integral formulas can be written from the
derivative formulas. (See the table on page 620.)
CHyperbolic
2nd
MATH
Or you can use the catalog.
p