Calculus 5.2 - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Calculus 5.2

Description:

Title: Calculus 5.2 Subject: Definite Integrals Author: Gregory Kelly Last modified by: Windows User Created Date: 11/3/2002 7:24:22 AM Document presentation format – PowerPoint PPT presentation

Number of Views:264
Avg rating:3.0/5.0
Slides: 13
Provided by: Gregor284
Category:
Tags: calculus

less

Transcript and Presenter's Notes

Title: Calculus 5.2


1
4.3 Reimann Sums Definite Integrals
Greg Kelly, Hanford High School, Richland,
Washington
2
When we find the area under a curve by adding
rectangles, the answer is called a Rieman sum.
The width of a rectangle is called a subinterval.
The entire interval is called the partition.
subinterval
partition
Subintervals do not all have to be the same size.
3
(No Transcript)
4
If we use subintervals of equal length, then the
length of a subinterval is
The definite integral is then given by
5
Leibniz introduced a simpler notation for the
definite integral
Note that the very small change in x becomes dx.
6
upper limit of integration
Integration Symbol
integrand
variable of integration (dummy variable)
lower limit of integration
7
We have the notation for integration, but we
still need to learn how to evaluate the
integral. If we can evaluate the integral, the
function is integrable.
Continuity implies integrability!
8
Note that this is continuous over all reals, so
we can integrate it.
Ex. 1 Evaluate
Lets use subintervals of equal width
Hey! This is our upper bound!
9
(No Transcript)
10
Note While the quantity area is a positive
value, definite integrals can be negative. What
do you think this means in terms of the area??
11
Ex. 2 Using limits, evaluate
12
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com