Andrea Vianello - PowerPoint PPT Presentation

1 / 81
About This Presentation
Title:

Andrea Vianello

Description:

Noninvasive mechanical ventilation in acute exacerbation of restrictive thoracic disease Eur Respir Mon 2001; 6:70-73 Nilsestuen et al. Respir Care 2005; ... – PowerPoint PPT presentation

Number of Views:130
Avg rating:3.0/5.0
Slides: 82
Provided by: rst61
Category:

less

Transcript and Presenter's Notes

Title: Andrea Vianello


1
QUANDO VENTILARE? CON COSA VENTILARE?
  • Andrea Vianello
  • S.C. Fisiopatologia Respiratoria
  • Ospedale-Università di Padova

2
RESPIRATORY FAILURE
LUNG FAILURE
PUMP FAILURE
GAS EXCHANGE FAILURE
VENTILATORY FAILURE
HYPERCAPNIA
HYPOXEMIA
3
  • Whats the point of ventilation?
  • Deliver O2 to alveoli
  • Hb binds O2 (small amount dissolved)
  • CVS transports to tissues to make ATP - do work
  • Remove CO2 from pulmonary vessels
  • from tissues - metabolism

4
Why ventilate?- purposes
  • To maintain or improve ventilation, tissue
    oxygenation.
  • To decrease the work of breathing improve
    patients comfort.

5
When ventilate?- indications
  • Failure of pulmonary gas exchange
  • Hypoxaemia low blood O2
  • Mechanical failure
  • Hypercarbia high blood CO2
  • Respiratory muscle fatigue
  • Need to intubate eg patient unconscious
  • Others eg
  • need neuro-muscular paralysis to allow surgery
  • cardiovascular reasons

6
Non-Invasive Ventilation
a form of ventilatory support that avoids airway
invasion
Hill et al Crit Care Med 2007 352402-7
7
Paziente con riacutizzazione acidotica di BPCO
Terapia medica O2 q.b. per SpO2 89-92
8
Airway narrowing obstruction
Airway Inflammation
? Frictional WOB
Auto- PEEP
Shortened muscles curvature
? Elastic WOB
Gas trapping
? muscle strength
? VT
? VE
? VA
  • PaCO2
  • pH
  • PaO2

9
usa i farmaci e bene !
Airway narrowing obstruction
Airway Inflammation
Steroids
? Frictional WOB
Abx
Auto- PEEP
Shortened muscles curvature
BDs
? Elastic WOB
Gas trapping
Teophylline
? muscle strength
? VT
? VE
? VA
  • PaCO2
  • pH
  • PaO2

10
usa i farmaci e bene !
Airway narrowing obstruction
Airway Inflammation
Steroids
? Frictional WOB
Abx
PEEP
Auto- PEEP
Shortened muscles curvature
BDs
? Elastic WOB
Gas trapping
Teophylline
MV
? muscle strength
? VT
? VE
MV
? VA
  • PaCO2
  • pH
  • PaO2

11
Paziente con riacutizzazione acidotica di BPCO
Terapia medica O2 q.b. per SpO2 89-92
Ripetizione di EGA
12
NIV consigliata l80 dei pazienti migliora
comunque con terapia standard Ogni 10 pazienti
trattati con NIV si evita 1 ETI NIV migliora la
dispnea
gt7.30 pH lt 7.35
NIV altamente consigliata Senza NIV 1 paziente su
2 necessita di ETI NIV migliora la sopravvivenza
pH lt 7.30
NIV altamente consigliata 1 paziente su 2
fallisce NIV Tuttavia con NIV migliora outcome
ospedaliero e sopravvivenza a 1 anno
pH lt 7.20
13
NIV VS TRATTAMENTO STANDARD
Keenan S et al
14
NIV VS TRATTAMENTO STANDARD
Keenan S et al
15
NIV VS TRATTAMENTO STANDARD
Keenan S et al
16
The ICU studies
  • Confirm the feasibility of NIV
  • Confirm the effectiveness of NIV
  • Selected patients / enthusiastic Units
  • Reduced complications - particularly infectious
  • 16 v 48 1 ,18 v 60 2
  • Reduce ICU / Hospital stay
  • 23 v 35 days 1 , 9 v 15 days 2

1. Brochard et al NEJM 1995 333817-22 2. Girou
et al JAMA 2000 2842361-7
17
2005 128
18
  • 49 pazienti con IRA in BPCO dopo fallimento
    terapia medica, pH 7.2
  • Simili durata di permanenza in ICU, durata VM,
    complicanze generali, mortalità in ICU, e
    mortalità in ospedale
  • con NIV 48 evitano ETI, sopravvivono con
    permanenza in ICU inferiore vs pazienti VM
    invasiva (P0.02)
  • A 1 anno NIV inferiore riospedalizzazione (65
    vs 100 P0.016) e minor frequenza di riutilizzo
    supplemento di ossigeno (0 vs 36)

19
  • Studio caso-controllo 64 paz. con IRA trattati
    con NIV pH 7.18
  • 40/64 (62) fallimento NIV (RR con NIV - 38)
  • Simili mortalità in ICU, e mortalità in ospedale
    durata di permanenza in ICU e post ICU, ma
  • Inferiori complicanze (P0.01) e probabilità di
    rimanenere in VM (P0.056)
  • Se NIV efficace (24/64 38) migliore
    sopravvivenza e ridotta permanenza in ICU vs
    pazienti VM invasiva

NIV riduce necessità di ETI e ospedalizzazione,
migliora outcome a lungo termine
20
Definition What is it?
  • Mechanical Ventilation
  • Machine to ventilate lungs move air in ( out)
  • Several ways to..move air in (IPPV vs others)
  • Intermittent Positive Pressure Ventilation

21
(No Transcript)
22
Definition What is it?
  • Mechanical Ventilation
  • Machine to ventilate lungs move air in ( out)
  • Several ways to..move air in (IPPV vs others)
  • Intermittent Positive Pressure Ventilation
  • Several ways to connect the ventilator to
  • the patient

23
Several ways to connect the machine to patient
  • Oro-tracheal Intubation
  • Tracheostomy
  • Non-Invasive
  • Ventilation

24
Normal breath
Normal breath inspiration, awake
Lung _at_ FRC balance
Diaphragm contracts
-2cm H20
?Chest volume
?Pleural pressure
-7cm H20
Alveolar pressure falls
Air moves down pressure gradient to fill lungs
25
La pompa diaframmatica genera ?P garantendo la
ventilazione polmonare, regolata da
  • Equazione di moto del Sistema Respiratorio
  • Pmusc V / C V x R

26
Normal breath
Normal breath expiration, awake
-7cm H20
Diaphragm relaxes
Pleural / Chest volume ?
Pleural pressure rises
Alveolar pressure rises
-2cm H20
Air moves down pressure gradient out of lungs
27
Ventilator breath
Portable ventilator
ICU ventilator
ICU ventilator
28
Ventilator breath
Ventilator breath inspiration
Air blown in
0 cm H20
? lung pressure
Air moves down pressure gradient to fill lungs
5 to10 cm H20
? Pleural pressure
29
Il ventilatore sostituisce totalmente o
parzialmente la pompa muscolare
  • Equazione di moto del Sistema Respiratorio
  • Pappl ( Pmusc) V / C V x R

30
Ventilator breath
Ventilator breath expiration Similar to
spontaneousie passive
Ventilator stops blowing air in
Pressure gradient Alveolus-trachea
Air moves out Down gradient
? Lung volume
31
Practicalities
  • Ventilator settings
  • Pressure vs volume
  • Assist vs Control
  • Trigger sensitivity
  • PEEP?

32
Details Inspiration Pressure or Volume?
  • Do you push in..
  • A gas at a set pressure? pressure..
  • A set volume of gas? volume.

33
Details Inspiration Pressure or Volume?
Pressure cm H20
Time
Pressure cm H20
Time
34
Pressure Ventilators
  • The use of pressure ventilators is increasing in
    critical care units.
  • A typical pressure mode delivers a selected gas
    pressure to the patient early in inspiration, and
    sustains the pressure throughout the inspiratory
    phase.
  • By meeting the patients inspiratory flow demand
    throughout inspiration, patient effort is reduced
    and comfort increased.

35
  • Although pressure is consistent with these modes,
    volume is not.
  • Volume will change with changes in resistance or
    compliance
  • Therefore, exhaled tidal volume is the variable
    to monitor closely.
  • With pressure modes, the pressure level to be
    delivered is selected, and with some mode
    options, rate and inspiratory time are preset as
    well.

36
Details Inspiration Pressure or Volume?
37
Volume Ventilators
  • The volume ventilator has been historically used
    in critical care settings
  • A respiratory rate, inspiratory time, and tidal
    volume are selected for the mechanical breaths.
  • The basic principle of this ventilator is that a
    designated volume of air is delivered with each
    breath.
  • The amount of pressure required to deliver the
    set volume depends on
  • - Patients lung
    compliance
  • - Patientventilator
    resistance factors

38
Peak Inspiratory Pressure (PIP ) must be
monitored in volume modes because it varies from
breath to breath
30
Peak Inspiratory Pressure
P
aw
Time (s)
cmH2O
1
2
3
-10
39
Details Pressure vs Volume in the Acute Setting
Secretions
hypoventilation
Vt preserved
partial compensation
hypoventilation
sensitive
insensitive
Schönhofer ERS Monograph 2001 16 259-73, mod
40
Details leak compensation
without leakage
with leakage
Vol
Vol
Pressure
Pressure
Pre-set
Mehta et al. Eur Respir J 2001 17 259-267
41
Interaction
Ventilator
Respiratory muscle pump
42
Ventilator
Respiratory muscle pump
work of breathing
spontaneous assisted controlled
43
(No Transcript)
44
Noninvasive mechanical ventilation in acute
exacerbation of restrictive thoracic disease
Eur Respir Mon 2001 670-73
45
(No Transcript)
46
4 Phases
  • Inspiratory triggering
  • Inspiration
  • Termination
  • of inspiration
  • Expiration

Nilsestuen et al. Respir Care 2005 50202-232
47
Details trigger sensitivity
trigger asynchrony
insensitive trigger
sensitive trigger
auto- triggering
  • trigger sensitivity to low
  • high level of PSV
  • hypercapnic encephalopathy
  • sedation
  • sleep
  • intrinsic PEEP (COPD)
  • tubing obstruction
  • trigger sensitivity to high
  • resistance changes
  • tubing leakage
  • cardiac oscillation

48
Trigger poco sensibile allo sforzo inspiratorio
non segue latto meccanico del respiratore
49
Trigger troppo sensibile latto meccanico si
innesca spontaneamente
50
(No Transcript)
51
Asynchrony between patient and ventilator
52
(No Transcript)
53
PSV
- pressione inspiratoria - sensibilità trigger -
eventuale rampa (tempo di raggiungimento PS)
Loperatore imposta
?
  • - pressure-controlled
  • flow-cycled
  • patient-triggered

Caratteristiche
- gt sincronismo paziente-ventilatore
? gt comfort - possibile graduazione
sforzo inspiratorio
54
lenta media rapida
Diversi tipi di rampa
55
PSV
Problemi
  • difficoltà di impostazione
  • livello PS ? VT 6-8ml/Kg RR 20-35b/min
  • P0.1 2-4 cm H2O
  • abolizione dissincronismi toraco-
    addominali
  • possibile sovrassistenza

56
A-CV
-volume corrente -frequenza respiratoria
-rapporto I/E -sensibilità del trigger
Loperatore imposta
  • volume-controlled
  • time-cycled
  • machine e/o patient-triggered (assistito)
  • pressure-limited (eventuale)

?
- volume corrente insufflato garantito - rapporto
I/E variabile
Caratteristiche
- possibile sovrassistenza ? alcalosi
respiratoria - insorgenza di PEEP intrinseca
Problemi
57
A-CV
58
Hybrid modes combine the advantages of pressure
pre-set and volume pre-set
VAPS Volume Assured Pressure Support
  • Automatic adjustment of inspiratory pressure
    (range setting)
  • Target volume set
  • Measurement of inspiratory pressure and
    expiratory volume
  • Calculation of missing inspiratory volume
  • Increase of inspiratory pressure

Assurance of tidal volume comfort of pressure
pre-set
59
VAPS Volume Assured Pressure Support
60
VAPS Volume Assured Pressure Support
61
Storre et al. Chest 2006130 815-821
62
  • AVAPS provides elegant adjustments of
    inspiratory pressures according to a pre-set
    target volume
  • AVAPS improves quality of ventilation
  • Improvements of sleep quality and quality of
    life are comparable to BiPAP-S/T
  • However Sleep quality is not completely
    normalized
  • Further studies are needed

Storre et al. Chest 2006 130 815-821
63
(No Transcript)
64
(No Transcript)
65
Efficacy and comfort of Volume-Guaranteed
Pressure Support (PSV-VTG) in patients with
chronic ventilatory failure of neuromuscular
origin
66
  • Four types of asynchronies
  • Ineffective inspiratory effort (IE)
    thoraco-abdominal displacements not assisted by
    the ventilator positive pressure boost
  • Inspiratory trigger delay a time lag between
    the initiation of the patents IE and the onset
    of inspiratory support
  • Prolonged inspiration or late expiratory cycling
    (hang-up) prolongation of mechanical
    insufflation beyond the end of patient
    inspiration
  • Autotriggering rapid succession of at least
    three pressurizations at a RR of gt40 br/min.

Efficacy and comfort of Volume-Guaranteed
Pressure Support (PSV-VTG) in patients with
chronic ventilatory failure of neuromuscular
origin
67
Efficacy and comfort of Volume-Guaranteed
Pressure Support (PSV-VTG) in patients with
chronic ventilatory failure of neuromuscular
origin
68
Details PEEP?
Pressure cm H20
PEEP
Time
Positive End Expiratory Pressure
69
Effects of PEEP
  • Normal, Awake
  • in expiration alveoli do not close (closing
    capacity)
  • change size
  • Lying down / Paralysis / - pathology
  • Lungs smaller, compressed
  • Harder to distend, starting from a smaller volume
  • In expiration alveoli close (closing capacity)
  • PEEP
  • Keeps alveoli open in expiration
  • Danger applied to all alveoli
  • Start at higher point on compliance curve

70
Effects of PEEP
over-distended alveoli
Compliance ?Volume ? Pressure
Volume
energy needed to open alveoli ?damaged during
open/closing - abnormal forces
Pressure
71
Effects of PEEP
Compliance ?Volume ? Pressure
Volume
PEEP start inspiration from a higher
pressure ??damage during open/closing
Pressure
Raised PEEP
72
Regional ventilation PEEP
Spontaneous, standing
over-distended alveoli
Compliance ?Volume ? Pressure
Volume
Pressure
73
Regional ventilation PEEP
Mechanical Ventilation
Compliance ?Volume ? Pressure
Volume
Pressure
74
Details Cardiovascular effects
  • Compresses Pulmonary vessels
  • Reduced RV outflow
  • Reduced LV inflow

75
(No Transcript)
76
(No Transcript)
77
(No Transcript)
78
Details Cardiovascular effects
  • Compresses Pulmonary vessels
  • Reduced LV inflow
  • ? Cardiac Output Stroke Volume
  • Blood Pressure CO x resistance
  • ? Blood Pressure
  • Neurohormonal
  • Reduced RV outflow- backtracks to body
  • Head- ? Intracranial Pressure
  • Others - ? venous pressure

79
Vent settings to improve ltoxygenationgt
  • PEEP
  • Increases FRC
  • Prevents progressive atelectasis and
    intrapulmonary shunting
  • Prevents repetitive opening/closing (injury)
  • Recruits collapsed alveoli and improves V/Q
    matching
  • Resolves intrapulmonary shunting
  • Improves compliance
  • Enables maintenance of adequate PaO2 at a safe
    FiO2 level
  • Disadvantages
  • Increases intrathoracic pressure (may require
    pulmonary a. catheter)
  • Rupture PTX, pulmonary edema

80
PEEP Indications
  • Clinical 
  • Auto-PEEP
  • Cardiogenic pulmonary edema (? LV preload)
  • Hypoxemia with FIO2 gt 0.5
  • Collapsing alveoli (ARDS, postop atelectasis)
  • Chest wall instability (chest trauma)
  • Physiological
  • PaO2 lt 60 mm Hg on FIO2 0.8
  • PaO2 ? lt 10 mm Hg with FIO2 F of 0.2
  • PA-aO2 gt 300 on FIO2 1.0
  • Shunt gt 30 

81
NIV treatment summary
  • The ventilator management of NIV is continuously
    evolving
  • New ventilators are introduced, offering novel
    features
  • Clinical applications have been expanding
  • Clinicians must make selections that best match
    the ventilator with the patients requirements.
Write a Comment
User Comments (0)
About PowerShow.com