Title: CO2 capture activation and recycle
1Fe2O3 Photoanodesfor Hydrogen Production Using
Solar Energy
S. Dennison, K. Hellgardt, G.H. Kelsall,
Department of Chemical EngineeringImperial
College London, SW7 2AZ, UK s.dennison_at_imperial.ac
.uk
216th ECS Meeting October 8, 2009
2Project Objectives
- Solar-powered hydrogen generation systems
- Biophotolysis
- Photoelectrolysis
- Assessment of materials for photoelectrodes
1
3Photoelectrolysis of water
Requires gt 1.5 V (? ? lt ca. 830 nm)
2
4Energy requirements for Photoelectrolysis of water
Band Bending
e-
Separation between Fermi energy and Conduction
band edge
e-
H / H2
Thermodynamic Potential of Water
h?
O2 / H2O
h
Overpotential for O2 evolution
3
5Energy requirement for Photoelectrolysis of water
0.4V
0.
3
V
E
f
H
/ H
2
An ideal semiconductor for water-splitting has
band gap of ca. 2.6eV
1.5
V
O
/ H
O
2
2
0.4V
4
6Candidate Materials
- TiO2 Eg 3.0-3.2 eV (410-385 nm)
- Fe2O3 Eg 2.2 eV (gt565 nm)
- WO3 Eg 2.6 eV (475 nm)
5
7Fe2O3 range of stability
6
8Production of Fe2O3 Photoelectrodes
- CVD
- Fe(CO)5 tetraethoxysilane (Si-dopant)
- Spray pyrolysis
- FeCl2 SnCl4
- Ultrasonic spray pyrolysis
- Fe(acac)3 1 Nb
7
9Fe2O3 electrochemistry
0.1M NaOH/Water 0.01 Vs-1 Black dark Red
illuminated _at_ 450nm
8
10Fe2O3 electrochemistry
0.1M NaOH/Water-MeOH 8020 Scan rate 0.01 Vs-1
Black dark Red illuminated _at_ 450nm
9
11Impedance analysis
- Impedance analysis in the dark (Mott-Schottky)
- Plot of CSC-2 vs. electrode potential
- gradient proportional to donor density (ND)
- intercept flatband potential
10
12Fe2O3 electrochemistry
Modulation frequency 10KHz Vmod 0.005 V
11
13Impedance analysis
- From Mott-Schottky plots
- ND gt 5 x1019 cm-3
- EFB -0.55 V vs SCE (water)
- -0.35 V vs SCE (water-methanol)
12
14Fe2O3 electrochemistry illuminated
Chopped Illum (87 Hz) _at_ 450nm Scan rate 0.01
Vs-1 0.1M NaOH Red Water Blue Water-MeOH
8020
13
15Fe2O3 electrochemistry photocurrent transients
Water 450nm Chop _at_ 3 Hz Potential 0.6 V
14
16Fe2O3 electrochemistry photocurrent transients
Water-MeOH 8020 450nm Chop _at_ 3 Hz Potential
0.6 V
15
17Source of apparent dark reduction reaction
- From photochemically generated FeO42-
- FeO42- is unstable and decomposes according to
- Oxidation of Fe2O3 to FeO42- is possible
- This reaction would generate a net cathodic
current - CH3OH would suppress formation of FeO42-
16
18Fe2O3 range of stability including CH3OH
17
19Fe2O3 photoelectrochemistry summary
Surface state (reduced by CH3OH?)
18
20Possible nature of surface state
- Derives from surface Fe3O4
- Formed by reduction of Fe2O3
- Reactive Fe3 at the surface
- Reduced chemically or electrochemically
19
21Modelling Fe2O3 Photoresponse
hn
kmin
kmaj
k0
20
22Modelling Fe2O3 Photoresponse
- Steady-state photocurrent given by
Peter et al., J Electroanal Chem, 1984, 165, 29
21
23Data input to model
- ND 1020 cm-3
- ? 2.2 x 105 cm-1
- I0 1014 cm-2
- ? 50
- kp 10-6 cm-2 s-1
- kn 2 x 10-8 cm-2 s-1
- k0 103 cm s-1
- n0 1021 cm-3
- Ns 1012 cm-2
- Es 0.7 eV
22
24Initial modelling results
23
25Depletion Layer Model for Fe2O3
hn
kmin
kS
kmaj
k0
24
26Conclusions
- Spray pyrolysed Fe2O3 demonstrates
- Poor efficiency (Vonset ca. 0.7 V from Vfb)
- Surface states from photoelectrochemically
generated - FeO42-
- Fe3O4
- Modelling approximates some observed behaviour
25
27Future Work
- Develop Fe2O3 deposition methods
- Refine model
- Add surface state mediated charge transfer
- Apply to Fe2O3 from other deposition methods
- Improvements to Fe2O3 surface catalysis?
26