CO2 capture activation and recycle - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

CO2 capture activation and recycle

Description:

... Production of Fe2O3 Photoelectrodes CVD: Fe(CO)5 + tetraethoxysilane (Si-dopant) Spray pyrolysis: FeCl2 + SnCl4 Ultrasonic spray pyrolysis: Fe ... – PowerPoint PPT presentation

Number of Views:110
Avg rating:3.0/5.0
Slides: 28
Provided by: Dr739
Category:

less

Transcript and Presenter's Notes

Title: CO2 capture activation and recycle


1
Fe2O3 Photoanodesfor Hydrogen Production Using
Solar Energy
S. Dennison, K. Hellgardt, G.H. Kelsall,
Department of Chemical EngineeringImperial
College London, SW7 2AZ, UK s.dennison_at_imperial.ac
.uk
216th ECS Meeting October 8, 2009
2
Project Objectives
  • Solar-powered hydrogen generation systems
  • Biophotolysis
  • Photoelectrolysis
  • Assessment of materials for photoelectrodes

1
3
Photoelectrolysis of water
Requires gt 1.5 V (? ? lt ca. 830 nm)
2
4
Energy requirements for Photoelectrolysis of water
Band Bending
e-

Separation between Fermi energy and Conduction
band edge
e-

H / H2
Thermodynamic Potential of Water

h?
O2 / H2O
h
Overpotential for O2 evolution

3
5
Energy requirement for Photoelectrolysis of water




0.4V


0.
3
V

E

f

H
/ H

2
An ideal semiconductor for water-splitting has
band gap of ca. 2.6eV
1.5
V


O
/ H
O

2
2
0.4V

4
6
Candidate Materials
  • TiO2 Eg 3.0-3.2 eV (410-385 nm)
  • Fe2O3 Eg 2.2 eV (gt565 nm)
  • WO3 Eg 2.6 eV (475 nm)

5
7
Fe2O3 range of stability
6
8
Production of Fe2O3 Photoelectrodes
  • CVD
  • Fe(CO)5 tetraethoxysilane (Si-dopant)
  • Spray pyrolysis
  • FeCl2 SnCl4
  • Ultrasonic spray pyrolysis
  • Fe(acac)3 1 Nb

7
9
Fe2O3 electrochemistry
0.1M NaOH/Water 0.01 Vs-1 Black dark Red
illuminated _at_ 450nm
8
10
Fe2O3 electrochemistry
0.1M NaOH/Water-MeOH 8020 Scan rate 0.01 Vs-1
Black dark Red illuminated _at_ 450nm
9
11
Impedance analysis
  • Impedance analysis in the dark (Mott-Schottky)
  • Plot of CSC-2 vs. electrode potential
  • gradient proportional to donor density (ND)
  • intercept flatband potential

10
12
Fe2O3 electrochemistry
Modulation frequency 10KHz Vmod 0.005 V
11
13
Impedance analysis
  • From Mott-Schottky plots
  • ND gt 5 x1019 cm-3
  • EFB -0.55 V vs SCE (water)
  • -0.35 V vs SCE (water-methanol)

12
14
Fe2O3 electrochemistry illuminated
Chopped Illum (87 Hz) _at_ 450nm Scan rate 0.01
Vs-1 0.1M NaOH Red Water Blue Water-MeOH
8020
13
15
Fe2O3 electrochemistry photocurrent transients
Water 450nm Chop _at_ 3 Hz Potential 0.6 V
14
16
Fe2O3 electrochemistry photocurrent transients
Water-MeOH 8020 450nm Chop _at_ 3 Hz Potential
0.6 V
15
17
Source of apparent dark reduction reaction
  • From photochemically generated FeO42-
  • FeO42- is unstable and decomposes according to
  • Oxidation of Fe2O3 to FeO42- is possible
  • This reaction would generate a net cathodic
    current
  • CH3OH would suppress formation of FeO42-

16
18
Fe2O3 range of stability including CH3OH
17
19
Fe2O3 photoelectrochemistry summary
Surface state (reduced by CH3OH?)
18
20
Possible nature of surface state
  • Derives from surface Fe3O4
  • Formed by reduction of Fe2O3
  • Reactive Fe3 at the surface
  • Reduced chemically or electrochemically

19
21
Modelling Fe2O3 Photoresponse
hn
kmin
kmaj
k0
20
22
Modelling Fe2O3 Photoresponse
  • Gärtner photoresponse
  • Steady-state photocurrent given by

Peter et al., J Electroanal Chem, 1984, 165, 29
21
23
Data input to model
  • ND 1020 cm-3
  • ? 2.2 x 105 cm-1
  • I0 1014 cm-2
  • ? 50
  • kp 10-6 cm-2 s-1
  • kn 2 x 10-8 cm-2 s-1
  • k0 103 cm s-1
  • n0 1021 cm-3
  • Ns 1012 cm-2
  • Es 0.7 eV

22
24
Initial modelling results
23
25
Depletion Layer Model for Fe2O3
hn
kmin
kS
kmaj
k0
24
26
Conclusions
  • Spray pyrolysed Fe2O3 demonstrates
  • Poor efficiency (Vonset ca. 0.7 V from Vfb)
  • Surface states from photoelectrochemically
    generated
  • FeO42-
  • Fe3O4
  • Modelling approximates some observed behaviour

25
27
Future Work
  • Develop Fe2O3 deposition methods
  • Refine model
  • Add surface state mediated charge transfer
  • Apply to Fe2O3 from other deposition methods
  • Improvements to Fe2O3 surface catalysis?

26
Write a Comment
User Comments (0)
About PowerShow.com