Sequential data assimilation in oceanography - PowerPoint PPT Presentation

1 / 39
About This Presentation
Title:

Sequential data assimilation in oceanography

Description:

Sequential data assimilation. in oceanography. Bertino Laurent, ... (Doucet et al. 2001) the latest estimation method... Alternative Monte Carlo methods: ... – PowerPoint PPT presentation

Number of Views:45
Avg rating:3.0/5.0
Slides: 40
Provided by: centredege
Category:

less

Transcript and Presenter's Notes

Title: Sequential data assimilation in oceanography


1
Sequential data assimilation in oceanography
Centre de Geostatistique
Centre de géostatistique
  • TIES 2002, Genoa, 16th june

Bertino Laurent, Wackernagel Hans Centre de
géostatistique, ENSMP http//cg.ensmp.fr/bertino
2
Outline
  • Data assimilation (DA) problem
  • Usual sequential DA methods
  • Optimal Interpolation
  • Kalman filter (KF)
  • Further theoretical developments
  • Normalisation for different supports
  • Nonlinear estimation ( illustration)
  • Case studies Odra lagoon hydrodynamics
  • Assimilation of water level (easy)
  • Assimilation of salinity (difficult)

3
Issues in data assimilation
  • Needed
  • Monitoring stations.
  • Dynamical model (partial diff. equations pde)
  • Goals
  • Combine both informations on line.
  • Correct an imperfect model.
  • Interpret data by nonlinear physical equations.

4
(No Transcript)
5
Data assimilationas a hidden Markov chain model
Hidden state
  • Model (pde) f
  • Measurements Y

Observations
  • Variational DA optimisation (meteo 1980)
  • Sequential DA statistical estimation (oceano
    1990)

6
Theoretical problems
  • Nonlinear pde model and observations
  • Linear models not really interesting.
  • Is the gaussian approximation adequate?
  • Different spatio-temporal supports
  • Model defined grid and time step.
  • Data sampling device and integration time.

7
Practical problems
  • Memory requirements
  • Physical models require high resolution.
  • State vector X of 106 parameters.
  • Computing times
  • Model propagations are CPU consuming.
  • Operational constraint forecast must be
    delivered before the events go out of hand!

8
Sequential DA
  • Two-step recursive estimation
  • 1. Propagation Xf (as forecast)
  • 2. Correction Xa (as analysis)

9
Optimal interpolation(Gandin 1965, Daley 1991)
  • Stationary error, unbiased and gaussian
  • X-Xf N (0,C)
  • Multivariate covariance C to be specified
  • Least squares estimation simple kriging.
  • Primitive but cheap 1 model propagation!

10
Kalman filter(Kalman 1960, Ghil 1981)
1
2
3
  • 3 random error fields
  • 1 Initial error N(0,C0)
  • 2 Model error N(0,?m)
  • 3 Measurement error N(0,?o)
  • Improvement error propagation by f
  • nonstationary Xn(x) of covariance matrix Cfn

11
Kalman filterlinear case
  • Propagation
  • Correction
  • Kalman gain
  • Update

F linear model H observation operator
The correction estimator is kriging with known
mean
12
Kalman filtersnonlinear propagation
  • Ensemble KF EnKF (Evensen 1994)
  • Monte Carlo simulations drawing Xa,inL(XnY1n)
  • avoids linearizing f
  • strongly nonlinear dynamics
  • 100 propagations
  • Extended KF EKF (Jazwinski 1970)
  • f linearised every step
  • CPU consuming
  • Sub-optimal schemes
  • RRSQRT Reduced Rank Square Root (Heemink
    Verlaan 1995)
  • approximation on dominant eigenvalues
  • 50 model propagations

13
Different supportsnormalisation
  • The model propagation provides
  • Output on grid cells Xn(vi)
  • Block covariance matrix Cfn C(vi,vj)(i,j)
  • Correction step
  • Quasi punctual measurements Yn(x)
  • C(x,vj) required
  • How to increase the covariance resolution?

14
Different supports
  • Mercer decomposition theorem (eigenfunctions)

We have
We need
Estimation of ?(x) knowing all ?(vi)?
15
Different supports(idea C. Lajaunie)
  • Kriging
  • Gaussian assumption.
  • Specify a stationary structure C?(x-y)
  • Good restitution of C(x,vi)
  • Easy to implement with EKF, EnKF.

16
Kalman filterlinear correction
  • X and Y assumed gaussian, but f nonlinear
  • Least squares estimation not optimal.
  • Attraction towards the gaussian law.
  • Non-physical Xan values (into f again at n1).

Does the solution need to be gaussian?
17
Kalman filterfor lognormal variables
  • Nonlinear transform
  • Difficulty nonlinear estimation of nonstationary
    variables.
  • Use a Monte Carlo approximation (EnKF)

Valid for all transformations
18
Lognormal model illustration Idealised case
1-D ecological model
  • Spring bloom model (Evans Parslow, Eknes
    Evensen)

Nutrients
Herbivores
Phytoplankton
19
Idealised 1-D ecological model
  • Simulated data
  • Equivalence between EnKF and RRSQRT
  • Characteristics
  • Sensitive to initial conditions
  • Non-linear dynamics

Nutrients
Phytoplankton
Herbivores
20
Lognormal assumption
Original histograms positive
N
P
H
logarithms
possible refinement with gaussian anamorphosis
21
Results
Gaussian
Lognormal
  • Gaussian assumption
  • Truncated Hlt0
  • Low H values overestimated
  • False starts
  • Lognormal assumption
  • Positive values
  • Errors dependent on values

N
P
H
RMS observed errors
22
SIR filters(Doucet et al. 2001)the latest
estimation method
  • Alternative Monte Carlo methods
  • Sequential Importance Sampling Resampling
  • Fully nonlinear estimation (? Kalman)
  • Recent application in physical oceanography (van
    Leeuwen 2002)

23
Application to the Odra lagoon
  • Data assimilation
  • fixed stations
  • hydrodynamics TRIM3D model (Casulli 1994, Wolf)

Pl
D
Summer 1997 flood period
24
The Odra lagoonsensitive to hydrodynamics and
transport
Water level
Salinity
Fluxes
Heat
Matter
Physical model
Ecological model
25
Water levels TRIM3D model (Casulli 1994, Wolf)
Well known dynamics but ill-specified boundary
conditions
  • Boundary conditions
  • Water levels at the Baltic interface
  • Wind fields
  • Odra river discharge
  • Almost homogeneous variations
  • RRSQRT KF

26
Water levelmeasurements
  • 6 fixed stations flood period
  • 1 boundary conditions
  • 3 assimilated data
  • 2 validation
  • Measurements
  • temporally rich
  • spatially poor
  • Are 3 stations enough?

27
Model error at the Baltic sea interface
  • Time series analysis
  • cross-covariances shifts
  • Assumption wave-like error propagation (Sénégas,
    1999)
  • Invariant variograms
  • shifted cross-covariances
  • Spatial structure with large range
  • ignored support effect

28
Model validation without DATRIM3D boundary
conditions
Water levels at Odh1
meters
Time (days)
Arbitrary initial state
29
DA ValidationRRSQRT KF
Water levels at Odh1
meters
Time (days)
Data not assimilated
30
Salinitya more difficult example
  • Slow transport
  • More sensitive to initial conditions

2 stations only Influence range?
31
DA of salinitysetup
  • EnKF gt RRSQRT
  • easier setup of initial error
  • fewer parameters
  • Unknown structures
  • initial error
  • error at boundaries
  • support effect
  • Ship campaign data analysis
  • Ill-specified structures?

- Horizontal variogram
- Vertical variogram
32
Results attractordecreasing variances
Sd(sx)
Cov(sodh2,sx)
First assimilation
33
Results attractordecreasing variances
Cov(sodh2,sx)
Sd(sx)
After 1 day of assimilation
34
Results attractordecreasing variances
Cov(sodh2,sx)
Sd(sx)
After 2 days of assimilation
The model is always right!
35
DA of salinityinitial state
sx
Simulated sainity by TRIM3D
36
Results
TRIM3D
EnKF
1 day assimilation
CPU time 25 real time
37
Validation
TRIM3D
EnKF
A
A
B
B
B
A
5 days later
AB section ship campaign
38
References
  • Bertino, L. (2002). Assimilation de données pour
    la prédiction de paramètres hydrodynamiques et
    écologiques le cas de la lagune de lOder. PhD
    thesis, ENSMP
  • Bertino, L. Evensen G. et Wackernagel, H.
    (2002). Combining geostatistics and Kalman
    filtering for data assimilation in an estuarine
    system. Inverse Problems (18), p. 1-23
  • Evensen, G. (1994). Sequential data assimilation
    with a nonlinear quasi-geostrophic model using
    Monte Carlo methods to forecast statistics.
    Journal of Geophysical Research 99(C5), p.
    10143-10162
  • Verlaan, M. Heemink, A.W. (1997). Tidal flow
    forecasting using reduced rank suqare root
    filters. Stochastic Hydrology and Hydraulics
    11(5), p. 349-363
  • Wolf, T. Sénégas, J. Bertino, L. et
    Wackernagel, H. (2001). Application of data
    assimilation to three-dimensional hydrodynamics
    the case of the Odra lagoon. In Monestier, Allard
    et Froidevaux (Eds.), GeoENV III geostatistics
    for environmental applications, Amsterdam, p.
    157-168. Kluwer Academic

39
PIONEER projectthe example of the Odra lagoon
  • Physical data
  • water levels, salinity

Biological data nutrients, chlorophyll
Fluxes
Heat
Matter
Physical model
Ecological model
Write a Comment
User Comments (0)
About PowerShow.com