Title: Sequential data assimilation in oceanography
1Sequential data assimilation in oceanography
Centre de Geostatistique
Centre de géostatistique
- TIES 2002, Genoa, 16th june
Bertino Laurent, Wackernagel Hans Centre de
géostatistique, ENSMP http//cg.ensmp.fr/bertino
2Outline
- Data assimilation (DA) problem
- Usual sequential DA methods
- Optimal Interpolation
- Kalman filter (KF)
- Further theoretical developments
- Normalisation for different supports
- Nonlinear estimation ( illustration)
- Case studies Odra lagoon hydrodynamics
- Assimilation of water level (easy)
- Assimilation of salinity (difficult)
3Issues in data assimilation
- Needed
- Monitoring stations.
- Dynamical model (partial diff. equations pde)
- Goals
- Combine both informations on line.
- Correct an imperfect model.
- Interpret data by nonlinear physical equations.
4(No Transcript)
5Data assimilationas a hidden Markov chain model
Hidden state
- Model (pde) f
- Measurements Y
Observations
- Variational DA optimisation (meteo 1980)
- Sequential DA statistical estimation (oceano
1990)
6Theoretical problems
- Nonlinear pde model and observations
- Linear models not really interesting.
- Is the gaussian approximation adequate?
- Different spatio-temporal supports
- Model defined grid and time step.
- Data sampling device and integration time.
7Practical problems
- Memory requirements
- Physical models require high resolution.
- State vector X of 106 parameters.
- Computing times
- Model propagations are CPU consuming.
- Operational constraint forecast must be
delivered before the events go out of hand!
8Sequential DA
- Two-step recursive estimation
- 1. Propagation Xf (as forecast)
- 2. Correction Xa (as analysis)
9Optimal interpolation(Gandin 1965, Daley 1991)
- Stationary error, unbiased and gaussian
- X-Xf N (0,C)
- Multivariate covariance C to be specified
- Least squares estimation simple kriging.
- Primitive but cheap 1 model propagation!
10Kalman filter(Kalman 1960, Ghil 1981)
1
2
3
- 3 random error fields
- 1 Initial error N(0,C0)
- 2 Model error N(0,?m)
- 3 Measurement error N(0,?o)
- Improvement error propagation by f
- nonstationary Xn(x) of covariance matrix Cfn
11Kalman filterlinear case
F linear model H observation operator
The correction estimator is kriging with known
mean
12Kalman filtersnonlinear propagation
- Ensemble KF EnKF (Evensen 1994)
- Monte Carlo simulations drawing Xa,inL(XnY1n)
- avoids linearizing f
- strongly nonlinear dynamics
- 100 propagations
- Extended KF EKF (Jazwinski 1970)
- f linearised every step
- CPU consuming
- Sub-optimal schemes
- RRSQRT Reduced Rank Square Root (Heemink
Verlaan 1995) - approximation on dominant eigenvalues
- 50 model propagations
13Different supportsnormalisation
- The model propagation provides
- Output on grid cells Xn(vi)
- Block covariance matrix Cfn C(vi,vj)(i,j)
- Correction step
- Quasi punctual measurements Yn(x)
- C(x,vj) required
- How to increase the covariance resolution?
14Different supports
- Mercer decomposition theorem (eigenfunctions)
We have
We need
Estimation of ?(x) knowing all ?(vi)?
15Different supports(idea C. Lajaunie)
- Kriging
- Gaussian assumption.
- Specify a stationary structure C?(x-y)
- Good restitution of C(x,vi)
- Easy to implement with EKF, EnKF.
16Kalman filterlinear correction
- X and Y assumed gaussian, but f nonlinear
- Least squares estimation not optimal.
- Attraction towards the gaussian law.
- Non-physical Xan values (into f again at n1).
Does the solution need to be gaussian?
17Kalman filterfor lognormal variables
- Nonlinear transform
- Difficulty nonlinear estimation of nonstationary
variables. - Use a Monte Carlo approximation (EnKF)
Valid for all transformations
18Lognormal model illustration Idealised case
1-D ecological model
- Spring bloom model (Evans Parslow, Eknes
Evensen)
Nutrients
Herbivores
Phytoplankton
19Idealised 1-D ecological model
- Simulated data
- Equivalence between EnKF and RRSQRT
- Characteristics
- Sensitive to initial conditions
- Non-linear dynamics
Nutrients
Phytoplankton
Herbivores
20Lognormal assumption
Original histograms positive
N
P
H
logarithms
possible refinement with gaussian anamorphosis
21Results
Gaussian
Lognormal
- Gaussian assumption
- Truncated Hlt0
- Low H values overestimated
- False starts
- Lognormal assumption
- Positive values
- Errors dependent on values
N
P
H
RMS observed errors
22SIR filters(Doucet et al. 2001)the latest
estimation method
- Alternative Monte Carlo methods
- Sequential Importance Sampling Resampling
- Fully nonlinear estimation (? Kalman)
- Recent application in physical oceanography (van
Leeuwen 2002)
23Application to the Odra lagoon
- Data assimilation
- fixed stations
- hydrodynamics TRIM3D model (Casulli 1994, Wolf)
Pl
D
Summer 1997 flood period
24The Odra lagoonsensitive to hydrodynamics and
transport
Water level
Salinity
Fluxes
Heat
Matter
Physical model
Ecological model
25Water levels TRIM3D model (Casulli 1994, Wolf)
Well known dynamics but ill-specified boundary
conditions
- Boundary conditions
- Water levels at the Baltic interface
- Wind fields
- Odra river discharge
- Almost homogeneous variations
- RRSQRT KF
26Water levelmeasurements
- 6 fixed stations flood period
- 1 boundary conditions
- 3 assimilated data
- 2 validation
- Measurements
- temporally rich
- spatially poor
- Are 3 stations enough?
27Model error at the Baltic sea interface
- Time series analysis
- cross-covariances shifts
- Assumption wave-like error propagation (Sénégas,
1999) - Invariant variograms
- shifted cross-covariances
- Spatial structure with large range
- ignored support effect
28Model validation without DATRIM3D boundary
conditions
Water levels at Odh1
meters
Time (days)
Arbitrary initial state
29DA ValidationRRSQRT KF
Water levels at Odh1
meters
Time (days)
Data not assimilated
30Salinitya more difficult example
- Slow transport
- More sensitive to initial conditions
2 stations only Influence range?
31DA of salinitysetup
- EnKF gt RRSQRT
- easier setup of initial error
- fewer parameters
- Unknown structures
- initial error
- error at boundaries
- support effect
- Ship campaign data analysis
- Ill-specified structures?
- Horizontal variogram
- Vertical variogram
32Results attractordecreasing variances
Sd(sx)
Cov(sodh2,sx)
First assimilation
33Results attractordecreasing variances
Cov(sodh2,sx)
Sd(sx)
After 1 day of assimilation
34Results attractordecreasing variances
Cov(sodh2,sx)
Sd(sx)
After 2 days of assimilation
The model is always right!
35DA of salinityinitial state
sx
Simulated sainity by TRIM3D
36Results
TRIM3D
EnKF
1 day assimilation
CPU time 25 real time
37Validation
TRIM3D
EnKF
A
A
B
B
B
A
5 days later
AB section ship campaign
38References
- Bertino, L. (2002). Assimilation de données pour
la prédiction de paramètres hydrodynamiques et
écologiques le cas de la lagune de lOder. PhD
thesis, ENSMP - Bertino, L. Evensen G. et Wackernagel, H.
(2002). Combining geostatistics and Kalman
filtering for data assimilation in an estuarine
system. Inverse Problems (18), p. 1-23 - Evensen, G. (1994). Sequential data assimilation
with a nonlinear quasi-geostrophic model using
Monte Carlo methods to forecast statistics.
Journal of Geophysical Research 99(C5), p.
10143-10162 - Verlaan, M. Heemink, A.W. (1997). Tidal flow
forecasting using reduced rank suqare root
filters. Stochastic Hydrology and Hydraulics
11(5), p. 349-363 - Wolf, T. Sénégas, J. Bertino, L. et
Wackernagel, H. (2001). Application of data
assimilation to three-dimensional hydrodynamics
the case of the Odra lagoon. In Monestier, Allard
et Froidevaux (Eds.), GeoENV III geostatistics
for environmental applications, Amsterdam, p.
157-168. Kluwer Academic
39PIONEER projectthe example of the Odra lagoon
- Physical data
- water levels, salinity
Biological data nutrients, chlorophyll
Fluxes
Heat
Matter
Physical model
Ecological model