Title: Stationaire warmteoverdracht door conductie I125practicum
1Stationaire warmteoverdrachtdoor
conductieI125-practicum
- Jeroen De Temmerman, Josse de Baerdemaeker
- Acad. Jaar 2003-2004
- Eerste ingenieursjaar Bio-ingenieur
2Chapter 4 - Steady State Heat Conduction
Page 46 Datta, 2002
3Steady State Heat Conduction in a slab
- A heat transfer process is at steady state if the
temperature does not change with time (no
storage) - For no storage and no generation, the governing
equation becomes - The simplest boundary conditions are when the two
surface temperatures are known
4Steady State Heat Conduction in a slab
- The solution shows a linear change in temperature
at steady state
5Steady-state diffusion in a composite media
- A composite slab can be treated as series or
parallel combinations of the thermal resistances
of the individual slabs
6Thermal Resistances and R-Values
- Analagous to electricity if in series, Heat
Flux Temperature Difference ?Thermal
Resistances - Ex Thermal Conduction Resistance R L/kA
The R-Value is the resistance per unit area.
R-Values combine the effect of thickness and
conductivity and therefore are very useful Ex
R-Value L/k for plates Ceilings R-30
(C/(W m²) Walls R-11 (C/(W m²)
7Pas op
- R-waarde (of R-value) is per eenheid oppervlakte
(ook dikwijls in bouwliteratuur) - R (thermische weerstand) is voor de totale
oppervlakte) - Rtot som van de R's
8Belgische bouw-literatuur
- Courante symbolen en definities
- Het symbool R gebruiken we normaal als thermische
weerstand over de totale oppervlakte A - Anders spreken we over R-waarde.
9Een typische muur
Spouw(holte)
Binnenmuur
Pleister
Isolatie
Gevelsteen
10Doorsnede muur
11Stroming in verticale holte
H warm C koud
12Weerstand bij convektie
- Warmte overdracht door convektie
(hoofdstuk 6) - Gebruik convektie-coëfficiënt h
- A is de uitwisseloppervlakte ( cylinder-, plaat-,
bol-oppervlakte enz.)
13Problem 4.8.1
- Datta, 2002 pagina 64
- Weerstanden in series
- convektie weerstand R1/hA
- conductie weerstand RL/kA
14Steady State Heat Conduction in a Cylinder
For Steady State with no heat generation,
G.E.
B.C.s
15Steady State Heat Conduction in a Cylinder
Substituting
When is small, a Taylor series
expansion shows that,
And therefore in this case the thermal resistance
becomes the same as a slab
16Why is the temperature not linear for steady
state in a cylinder?
17 Warmteverlies in een arm
18Steady State Heat Conduction with Generation
- The G.E. simplifies to
- The B.C.s are given as
- The G.E. is integrated twice and the B.C.s are
applied in order to get the temperature profile
in a slab with heat generation
19Steady State Heat Conduction with Generation
- Steady state temperature profile in a slab with
constant internal heat generation.
20Heating of a compost pile
21Heat generation and insulation
22Schematic
23Thermoregulation
- Thermoregulation maintains the core body
temperature of humans and animals - It is an active process
- The thermo-regulatory process can be behavioral
or autonomic - There are limits to thermoregulation
24Fins Steady State heat transfer from extended
surfaces
25Equations for fins (equivalent to Datta, 2002
373 App. G5)Steady State heat transfer from
extended surfaces
Dividing by kA?x and taking limits as ?x ?0, the
Governing Equation becomes,
Boundary conditions,
Therefore, the new GE becomes
With new boundary conditions
26 Fins solutions Steady State heat transfer from
extended surfaces (very long finDatta, 2002
pag 58)
The solution to this GE is given by
Where
Solving with the boundary conditions,an
exponential drop in temperature is seen
Therefore Heat Loss with a fin Heat
Loss without a fin
27Vinnen pseudo-1 D
28Koel vin met eindige lengte L
- Vin-weerstand (geleiding convektie)
- LC is de gecorrigeerde lengte LCL AC/P
- N is het aantal vinnen op de plaat
- Tussen de vinnen RB en vinnen Rf in parallel
29Koelvinnen
roestvrij staal ( "stainless steel" )
30Example Fins - Pinna of Elephant
- Heat transfer from an elephant pinna. Here the
pinna acts like a fin for heat transfer
purposes. Shown is the right pinna at two
different ambient temperatures of 18C
(left) and 32.1C (right). The change in pattern
indicates that a change in blood flow
occurs at higher temperatures.
(Phillips and Heath, 1992) - A 4000 kg elephant need to release 4.65 kW.