Title: Accessing transversity via single spin (azimuthal) asymmetries
1Accessing transversity via single spin
(azimuthal) asymmetries
COMPASS workshop Paris, March 2004
Universality of T-odd effects in single spin and
azimuthal asymmetries, D. Boer, PM and F.
Pijlman, NP B667 (2003) 201-241 hep-ph/0303034
- P.J. Mulders
- Vrije Universiteit
- Amsterdam
- pjg.mulders_at_few.vu.nl
2Content
- Soft parts in hard processes
- twist expansion
- gauge link
- Illustrated in DIS
- Two or more (separated) hadrons
- transverse momentum dependence
- T-odd phenomena
- Illustrated in SIDIS and DY
- Universality
- Items relevant for other processes
- Illustrated in high pT hadroproduction
3Soft physics in hard processes (e.g. inclusive
deep inelastic leptoproduction)
4(calculation of) cross sectionDIS
Full calculation
PARTON MODEL
5Lightcone dominance in DIS
6Leading order DIS
- In limit of large Q2 the result
- of handbag diagram survives
- contributions from A gluons
-
A
Ellis, Furmanski, Petronzio Efremov, Radyushkin
A gluons ? gauge link
7Color gauge link in correlator
Matrix elements ltyAygt produce the gauge link
U(0,x) in leading quark lightcone correlator
A
8Distribution functions
Soper Jaffe Ji NP B 375 (1992) 527
Parametrization consistent with Hermiticity,
Parity Time-reversal
9Distribution functions
- M/P parts appear
- as M/Q terms in s
- T-odd part vanishes
- for distributions but is
- important for fragmentation
Jaffe Ji NP B 375 (1992) 527 Jaffe Ji
PRL 71 (1993) 2547
leading part
10Distribution functions
Selection via specific probing operators (e.g.
appearing in leading order DIS, SIDIS or DY)
Jaffe Ji NP B 375 (1992) 527
11Lightcone correlatormomentum density
Production matrix
y ½ g-g y
Sum over lightcone wf squared
12Basis for partons
- Good part of Dirac
- space is 2-dimensional
- Interpretation of DFs
unpolarized quark distribution
helicity or chirality distribution
transverse spin distr. or transversity
13Matrix representationfor M F(x)gT
Bacchetta, Boglione, Henneman Mulders PRL 85
(2000) 712
Related to the helicity formalism
Anselmino et al.
- Off-diagonal elements (RL or LR) are chiral-odd
functions - Chiral-odd soft parts must appear with partner
in e.g. SIDIS, DY
14(No Transcript)
15Summarizing DIS
- Structure functions (observables) are identified
with distribution functions (lightcone
quark-quark correlators) - DFs are quark densities that are directly linked
to lightcone wave functions squared - There are three DFs
- f1q(x) q(x), g1q(x) Dq(x), h1q(x) dq(x)
- Longitudinal gluons (A, not seen in LC gauge)
are absorbed in DFs - Transverse gluons appear at 1/Q and are contained
in (higher twist) qqG-correlators - Perturbative QCD ? evolution
16Hard processes with two or more hadrons
17SIDIS cross section
18(calculation of) cross sectionSIDIS
Full calculation
PARTON MODEL
19Lightfront dominance in SIDIS
20Lightfront dominance in SIDIS
Three external momenta P Ph q transverse
directions relevant qT q xB P Ph/zh or qT
-Ph/zh
21Leading order SIDIS
- In limit of large Q2 only result
- of handbag diagram survives
-
- Isolating parts encoding soft physics
?
?
22Lightfront correlator(distribution)
Lightfront correlator (fragmentation)
Collins Soper NP B 194 (1982) 445
no T-constraint TPh,Xgtout Ph,Xgtin
Jaffe Ji, PRL 71 (1993) 2547 PRD 57 (1998)
3057
23Distribution
A
including the gauge link (in SIDIS)
One needs also AT Ga ? ATa ATa(x) ATa(8)
?dh Ga
Belitsky, Ji, Yuan, hep-ph/0208038 Boer, M,
Pijlman, hep-ph/0303034
From lty(0)AT(?)y(x)gt m.e.
24Distribution
A
including the gauge link (in SIDIS or DY)
SIDIS
A
DY
SIDIS ? F-
DY ? F
25Distribution
- for plane waves
- TPgt Pgt
- But...
- T U0, ? T U0,- ?
- this does affect
- F?(x,pT)
- ? appearance of
- T-odd functions
- in F?(x,pT)
including the gauge link (in SIDIS or DY)
26Parameterizations including pT
Ralston Soper NP B 152 (1979) 109
Tangerman Mulders PR D 51 (1995) 3357
Constraints from Hermiticity Parity
- Dependence
- on (x, pT2)
- Without T
- h1 and f1T
- nonzero!
- T-odd functions
- Fragmentation
- f ? D
- g ? G
- h ? H
- No T-constraint
- H1 and D1T
- nonzero!
27Distribution functions with pT
Ralston Soper NP B 152 (1979) 109
Tangerman Mulders PR D 51 (1995) 3357
Selection via specific probing operators (e.g.
appearing in leading order SIDIS or DY)
28Lightcone correlatormomentum density
Bacchetta, Boglione, Henneman Mulders PRL 85
(2000) 712
Remains valid for F(x,pT)
and also after inclusion of links for
F?(x,pT)
Sum over lightcone wf squared
Brodsky, Hoyer, Marchal, Peigne, Sannino PR D
65 (2002) 114025
29Interpretation
unpolarized quark distribution
need pT
T-odd
helicity or chirality distribution
need pT
T-odd
need pT
transverse spin distr. or transversity
need pT
need pT
30Difference between F and F-
Integrate over pT
31Integrated distributions
T-odd functions only for fragmentation
32Weighted distributions
Appear in azimuthal asymmetries in SIDIS or
DY These are process-dependent (through gauge
link) and thus need in fact superscript!
33Matrix representationfor M F(x)gT
reminder
Collinear structure of the nucleon!
34Matrix representationfor M F(x,pT)gT
T-odd g1T ? g1T i f1T and h1L ? h1L i h1
Bacchetta, Boglione, Henneman Mulders PRL 85
(2000) 712
35Matrix representationfor M D(z,kT) g-T
- No T-inv
- constraints
- H1 and
- D1T
- nonzero!
36Matrix representationfor M D(z,kT) g-T
- R/L basis for spin 0
- Also for spin 0
- a T-odd function
- exist, H1
- (Collins function)
e.g. pion
- FFs after
- kT-integration
- leaves just the
- ordinary D1(z)
37Summarizing SIDIS
- Beyond just extending DIS by tagging quarks
- Transverse momenta of partons become relevant,
appearing in azimuthal asymmetries - DFs and FFs depend on two variables,
- F?(x,pT) and D?(z,kT)
- Gauge link structure is process dependent (? ?)
- pT-dependent distribution functions and (in
general) fragmentation functions are not
constrained by time-reversal invariance - This allows T-odd functions h1 and f1T (H1
and D1T) appearing in single spin asymmetries
38T-odd effects in single spin asymmetries
39T-odd ? single spin asymmetry
- Wmn(qP,SPh,Sh) -Wnm(-qP,SPh,Sh)
- Wmn(qP,SPh,Sh) Wnm(qP,SPh,Sh)
- Wmn(qP,SPh,Sh) Wmn(qP, -SPh, -Sh)
- Wmn(qP,SPh,Sh) Wmn(qP,SPh,Sh)
symmetry structure
hermiticity
_
_
_
_
_
_
parity
_
_
_
_
_
_
time reversal
Conclusion
with time reversal constraint only even-spin
asymmetries
But time reversal constraint cannot be applied
in DY or in ?1-particle inclusive DIS or ee-
40Example of a single spin asymmetry
examplesOTO in ep? ? epX
- example of a leading azimuthal asymmetry
- T-odd fragmentation function (Collins function)
- involves two chiral-odd functions
- Best way to get transverse spin polarization
h1q(x)
Tangerman Mulders PL B 352 (1995) 129
Collins NP B 396 (1993) 161
41Single spin asymmetriessOTO
- T-odd fragmentation function (Collins function)
- or
- T-odd distribution function (Sivers function)
- Both of the above also appear in SSA in pp? ? pX
- Different asymmetries in leptoproduction!
- But be aware now of dependence
Boer Mulders PR D 57 (1998) 5780
Boglione Mulders PR D 60 (1999) 054007
Collins NP B 396 (1993) 161
Sivers PRD 1990/91
42(No Transcript)
43Process dependence and universality
44Difference between F and F-
?
integrated quark distributions
transverse moments
measured in azimuthal asymmetries
45Difference between F and F-
gluonic pole m.e.
46Time reversal constraints for distribution
functions
T-odd (imaginary)
Time reversal F(x,pT) ? F-(x,pT)
pFG
F?
F?
T-even (real)
F?-
47Consequences for distribution functions
SIDIS F DY F-
F??(x,pT) F?(x,pT) pFG
Time reversal ?
48Distribution functions
F??(x,pT) F?(x,pT) pFG
Sivers effect in SIDIS and DY opposite in sign
Collins hep-ph/0204004
49Time reversal constraints for fragmentation
functions
T-odd (imaginary)
Time reversal Dout(z,pT) ? D-in(z,pT)
pDG
D?
D?
T-even (real)
D?-
50Time reversal constraints for fragmentation
functions
T-odd (imaginary)
Time reversal Dout(z,pT) ? D-in(z,pT)
D?out
pDG out
D? out
T-even (real)
D?-out
51Fragmentation functions
D??(x,pT) D?(x,pT) pDG
Collins effect in SIDIS and ee- unrelated!
Time reversal does not lead to constraints
If pDG 0
But at present this seems (to me) unlikely
52T-odd phenomena
- T-invariance does not constrain fragmentation
- T-odd FFs (e.g. Collins function H1)
- T-invariance does constrain F(x)
- No T-odd DFs and thus no SSA in DIS
- T-invariance does not constrain F(x,pT)
- T-odd DFs and thus SSA in SIDIS (in combination
with azimuthal asymmetries) are identified with
gluonic poles that also appear elsewhere
(Qiu-Sterman, Schaefer-Teryaev) - Sign of gluonic pole contribution process
dependent - In fragmentation soft T-odd and (T-odd and
T-even) gluonic pole effects arise - No direct comparison of Collins asymmetries in
SIDIS and ee- (unless pDG 0)
53What about hadroproduction?
54Issues in hadroproduction
- Weighted functions will appear in L-R asymmetries
(pT now hard scale!) - But which one?
- There are (moreover) various possibilities with
gluons - G(x,pT) unpolarized gluons in unpolarized
nucleon - DG(x,pT) transversely polarized gluons in a
longitudinally polarized nucleon - GT(x,pT) unpolarized gluons in a transversely
polarized nucleon (T-odd) - H?(x,pT) longitudinally polarized gluons in an
unpolarized nucleon -
55Issues in hadroproduction
- Contributions of F?(x,pT) and pFG not necessarily
in one combination - AN G(xa) ? f1T ?(1)-(xb) ? D1(zc)
f1(xa) ? f1T ?(1)(xb) ? D1(zc) - f1(xa) ? h1(xb) ? H1?- (zc)
f1(xa) ? h1(xb) ? H1? (zc) - f1(xa) ? GT(xb) ? D1(zc)
Many issues to be sorted out
56Thank you for your attention