Title: Compensatory Fuzzy Logic Discovery of strategically useful knowledge
1Compensatory Fuzzy Logic Discovery of
strategically useful knowledge
- Prof. Dr. Rafael Alejandro Espin Andrade
- Management Technology Studies Center
- Industrial Engineering Faculty
- Technical University of Havana
- CUJAE
- espin_at_ind.cujae.edu.cu, rafaelespin_at_yahoo.com
2(No Transcript)
3(No Transcript)
4Why a new multivalued fuzzy logic
- Learning, Judgment, Reasoning and Decision
Making are parts of a same process of thinking,
and have to be studied and modeled as a hole. - No compensation among truth value of basic
predicates are an obstacle to model human
judgment and decision making. - Associativity is an obstacle to get compensatory
operators with sensitivity to changes in truth
values of basic predicates, and possibilities of
interpretation of composed predicates truth
values according a scale
5 Fuzzy Logic based Decision Making Modeling
- It is not yet enough a formal field
- Bad behavior of multi-valued logic systems
- Pragmatic Combination of operators without
axiomatic formalization - Confluence of Objectives using only one operator
6Compensatory Logic
- It allows compensation among truth value of basic
predicates inside the composed predicate. - It is a not associative system.
- It is a sensitive and interpretable system
- It generalizes Classic Logic in a new and
complete way. - It is possible to model decision making problems
under risk, in a compatible way with utility
theory. - It explains the experimental results of
descriptive prospect theory as a rational way to
think - It allows a new mixed inference way using
statistical and logical inference - Its properties allows a better way to deal with
modeling from natural and professional languages
7Existing efforts to create fuzzy semantics
standards
- Using min-max logic
- Using a pragmatic combination of operators
8Models
- Competitive Enterprises Evaluation from
Secondary Sources. () - Analysis SWOT-OA (SWOTBSC) ()
- Competences Analysis
- Composed Inference from Compensatory Logic
(Useful for Data Mining, Knowledge Discovering,
Simulation) ()
9Models
- Integral Project Evaluation
- Negotiation
- New Theoretical Treatment of Cooperative
n-person Games Theory Quantitative Indexes for
Decision Making in Business Negotiation (Good
Deal Index, Convenience Counterpart Index) - SDIReadiness
10Compensatory Conjunction
Geometric Mean
11Negation
n(x) 1-x.
12Compensatory Disjunction
Dual of Geometric Mean
13Zadeh Implication i(x,y)d(n(x),c(x,y))
14Rule Definition of And
Operators of CFL using SWRL
Rule Definition of Negation
15 Operators of CFL using SWRL
Rule Definition of Or
16Operators of CFL using SWRL
Rule Definition of Implication
17Operators of CFL using SWRL
Rule Definition of Equivalence
18Creating Ontologies from fuzzy trees
- Create the tree from formulation in natural
language - Create classes using OWL or SWRL (using built
ins for membership functions) - Use the created built ins to create the new
classes inside SWRL
19No Associativity Level Properties
20As higher level a basic predicate be, more
influence it will has in the truth value of the
composed predicate.
c(c(x,y),z)
c(x,y,z)
c(x,y)
z
x
z
y
x
y
Both trees are the same for Associative Logic
Systems.
21Natural Implication i(x,y)d(n(x),y)
22Natural Implication
23Zadeh Implication i(x,y)d(n(x),c(x,y))
24(No Transcript)
25Universal and Existential Quantifiers
26Universal and Existential Quantifiers over
bounded universes of Rn
27Compatibility with Propositional Classical
Calculus
28Compatibility with Propositional Classical
Calculus (Kleene Axioms)
Natural Zadeh Ax 1
0.5859 0.5685 Ax 2 0.5122 0.5073 Ax
3 0.5556 0.5669 Ax 4 0.5859
0.5661 Ax 5 0.8533 0.5859 Ax 6
0.5026 0.5038 Ax 7 0.5315 0.5137 Ax
8 0.5981 0.5981
29Theorem of Compatibility Exclusive Property of
CFL useful to get fuzzy ontologies and connected
it with non fuzzy ones
p is an only is a correct formula (tautology) of
Propositional Calculus according to bivalued
logic if it has truth value greater than 0.5 in
CFL
30Inference
Logic Inference
Statistical Inference
Composed Inference
Composed Inference It allows to make and to
model hypothesis using Background Knowledge, to
estimate truth value of hypothesis using a sample
and search in parameters space of the model
increasing truth
31Hypothesis
- 1. If past time t from t0 is short, PIB at t0 is
high, and exchange rate peso-dollar is good, and
inflation too, then inflation at t0t will be
good. (sufficient condition for goodness of
future inflation) - 2. If past time t from t0 is short, PIB at t0 is
high, and exchange rate peso-dollar is good, and
inflation too, then exchange rate at t0t will be
good. (sufficient condition for goodness of
future exchange rate) - 3. If past time t from t0 is short, PIB at t0 is
high, and exchange rate peso-dollar is good, and
inflation too, then PIB at t0t will be high.
(sufficient condition for goodness of future PIB)
32 Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 1' Hypothesis 2' Hypothesis 3'
0,576160086 0,620615758 0,319922171 0,237583737 0,539710004 0,548489528
0,104861817 0,109086145 0,278621583 0,999987824 0,988994364 0,194511245
0,954676527 0,955654118 0,966207572 0,997833826 0,036824939 0,256004496
0,619516745 0,682054585 0,704510956 0,843278654 0,236556481 0,349107639
0,360116603 0,596395877 0,681417533 0,905856942 0,449708517 0,583310592
0,503173195 0,601806401 0,806558599 0,875167679 0,375314384 0,675469125
0,240645922 0,243684437 0,388070789 0,999988786 0,988986017 0,194481187
0,166064725 0,658210493 0,366102952 0,990618051 0,604258741 0,27023985
0,957234283 0,957808848 0,969335758 0,949513696 0,023763872 0,295017189
0,623564594 0,688110949 0,820055235 0,929246656 0,24713002 0,566004987
0,406582528 0,562805296 0,763656353 0,862017409 0,438632042 0,6827389
0,315003135 0,609940962 0,481272314 0,991513016 0,448097639 0,267486414
0,348881932 0,632987705 0,445100645 0,785234473 0,530719918 0,406855462
0,960632803 0,96120307 0,981985893 0,977613627 0,064500183 0,546627412
0,658386683 0,698912399 0,87122133 0,898146889 0,29047844 0,664809821
0,459222487 0,617040225 0,55840803 0,808412114 0,384684691 0,380968904
0,36295827 0,596407224 0,682984162 0,906088702 0,447004634 0,583111022
0,964920965 0,965265218 0,987462709 0,968219979 0,159229346 0,646455267
0,489849965 0,62196448 0,751265713 0,916814967 0,339829639 0,57450373
0,448296532 0,577103867 0,782469741 0,867623112 0,410028953 0,679530673
0,55878818 0,632516495 0,830278389 0,883071359 0,342921337 0,671518873
0,439202131 0,574390855 0,604586702 0,846168613 0,281018624 0,395033281
0,519845804 0,657303193 0,754040445 0,890357379 0,330713346 0,578926238
33 Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 1' Hypothesis 2' Hypothesis 3'
0,129937234 0,786977784 0,163182976 0,897313418 0,78995843 0,246740413
0,040471107 0,045576384 0,226920195 1 0,98899831 0,194313157
0,96601297 0,966586912 0,974686783 0,999999764 0,031185555 0,255212475
0,316375835 0,614728727 0,512356471 0,999226656 0,439429951 0,291353006
0,099650901 0,662430526 0,589342664 0,999838473 0,642938808 0,545153518
0,218548001 0,549156052 0,721617082 0,999637465 0,508526254 0,645300844
0,031375461 0,036578117 0,219591953 1 0,988998869 0,194313157
0,040525407 0,776150562 0,285353418 0,999998745 0,770101561 0,25525313
0,966018421 0,966594251 0,975835847 0,99982785 0,019121177 0,28913524
0,314847536 0,596608509 0,68759951 0,999859116 0,439114653 0,545002502
0,100646896 0,567339971 0,679511054 0,999611013 0,5903147 0,645417242
0,031430795 0,793473197 0,278579081 0,999998739 0,789884048 0,255253529
0,04487921 0,802329191 0,317793959 0,999085299 0,794414393 0,292286066
0,966014676 0,966568235 0,984519648 0,999968639 0,061925026 0,544546456
0,315423665 0,558446985 0,756193558 0,999660725 0,450390363 0,64520529
0,035867632 0,823077109 0,311327136 0,999080973 0,817720938 0,2923171
0,041885488 0,720353211 0,562956364 0,999833364 0,722064447 0,545194081
0,966016088 0,966509609 0,987918683 0,999924476 0,158754822 0,644565563
0,032816816 0,732504923 0,558813514 0,999832576 0,736638274 0,54520045
0,043013751 0,591969844 0,658918424 0,99959871 0,63696319 0,645474182
0,033966772 0,597042779 0,655685287 0,999596813 0,64484329 0,645483123
0,15293434 0,493060755 0,476469006 0,992585058 0,361083333 0,353165336
0,064133476 0,727586495 0,58911645 0,999644446 0,552232295 0,534562806
34Membership Functions
as true as false
almost false
35 Membership function
As true as false10 Almost false5
36 As true as false40 Almost false15
37 Gamma Beta Gamma Beta
Inflation 11 5 10.3022482 5.30220976
GIP 2 0 2.70067599 0.12747186
Money Value 7 12 6.8657769 12.0650321
Future Inflation 11 5 6.39146712 6.35080391
Future GIP 2 0 2 0
Future Money Value 7 12 7 12
Time 2 4 1.19916547 4.14284971
38Relation between CFL and Utility Theory
- Two possible outlooks of Decision Making problem
under risk using Compensatory Fuzzy Logic are
possible - First one
- Security All scenarios are convenient in
correspondence with its probabilities of
occurrence (Its is equivalent to be risk
adverse)
39Hedges
- Operators which models words like very, more or
least, enough, etc. They modifies the truth value
intensifying or un-intensifying judgments. - More used functions to define hedges are
functions f(x)xa , a is an exponent greater or
equal to cero. It is used to use 2 and 3 as
exponents to define the words very and hyper
respectively, and ½ for more or less.
39
40Function u(x)ln(v(x) have second diferential
positive (risk averse) when v es sigmoidal.
41Relation between CFL and Utility Theory
- Second outlook
- Opportunity There are convenient scenarios
according with their probabilities (It is
equivalent to be risk prone)
42These preferences are represented by
u(x)-ln(1-v(x) (It is proved by increasing
transformations). This function have negative
second differential (risk prone) when v is
sigmoidal.
43Teoremas
- Teorema 1
- Si f es un predicado difuso que representa la
conveniencia de los premios. El punto de vista
de la seguridad usando LDC representa las
preferencias de un decisor averso al riesgo con
función de utilidad u(x)ln(f(x)). - El punto de vista de la oportunidad usando LDC
representa las preferencias de un decisor
propenso al riesgo con función utilidad
u(x)-ln(1-f(x))
44Teoremas
- Teorema 2
- Dada un decisor con función utilidad u
acotada en el intervalo (m,M). - Si el decisor es averso al riesgo, el
predicado de la Lógica Difusa Compensatoria que
representa la conveniencia de los precios es
v(x)exp(u(x)-M). Si es propenso al riesgo, el
predicado de la Lógica Difusa Compensatoria que
representa la conveniencia de los premios es
v(x)1-exp(1-u(x)-m).
45Prospect Theory
- It is a descriptive decision making theory of
decision making under risks, based on
experiments. It deserved the nobel prize of
Economy for Kahnemann and Tervsky in 2003. - Individual decision makers are used to be risk
averse attitude about benefits and risk prone
attitude about loses - More general
- There is a reference value a, satisfying
for xlta that utility function is convex and for
xgta is concave.
46Prospect Theory
- Differential of the function for loses is great
than differential for benefits. - Individual decision makers are used to attribute
not linear weights to utilities using
probabilities of the correspondent scenarios. - That function are used to be concave in certain
interval 0,b and convex in b,1 b is a real
number greater than 0 and less than 1.
47Rational explanation of Experimental Results of
Kahnemann and Tervsky
- 56 lotteries and its experimental equivalents
were used from experiments of Kahnemann and
Tervsky. - We estimated the truth value of the statement
Every lottery is equivalent (in preference) to
its experimental equivalent, according CFL for
each preference model Universal (Risk Averse),
Existential (Risk Prone), Conjunction Rule and
Disjunction Rule. Best parameters of membership
functions maximizing the statement truth value
for all the models.
48Rational explanation of Experimental Results of
Kahnemann and Tervsky
- Result Experimental results of Kahnemann and
Tervsky can be explained as result of a new
based-CFL rationality working with no linear
membership functions of probabilities and
considering that security and opportunity are
both desirables for individual decision makers.
49 Prize1 Prize2 Prob1 Prob2 Equiv
Universal Existential Conjunction Disjunction
50 150 0.05 0.95 128 0.81046267 0.81043085 0.84579078 0.86240609
-50 -150 0.95 0.05 -60 0.98729588 0.98699553 0.98830472 0.988450983
-50 -150 0.75 0.25 -71 0.98987688 0.9898564 0.99040911 0.990496525
-50 -150 0.5 0.5 -92 0.99282463 0.99193467 0.99355369 0.993616354
-50 -150 0.25 0.75 -113 0.99547171 0.9930822 0.99578486 0.995822571
-50 -150 0.05 0.95 -132 0.99680682 0.98931435 0.99720726 0.997233981
100 200 0.95 0.05 118 0.80956738 0.76106093 0.85650544 0.874712043
100 200 0.75 0.25 130 0.79924863 0.77146557 0.8415966 0.86176461
100 200 0.5 0.5 141 0.77419623 0.76244496 0.82436946 0.845652063
100 200 0.25 0.75 162 0.75472897 0.75240339 0.79542526 0.822098935
100 200 0.05 0.95 178 0.72808136 0.72808118 0.77001401 0.801244793
-100 -200 0.95 0.05 -112 0.99547158 0.99535134 0.99569579 0.995718909
-100 -200 0.75 0.25 -121 0.99634217 0.99633821 0.99644367 0.996456576
-100 -200 0.5 0.5 -142 0.99762827 0.99734518 0.99777768 0.997786734
-100 -200 0.25 0.75 -158 0.99843469 0.99764225 0.99848705 0.998493062
-100 -200 0.05 0.95 -179 0.99905141 0.99589186 0.9991227 0.999126427
0.91683692 0.89594007 0.93079936 0.942636789
50(No Transcript)
51Users and Groups
52Organizations and Matrices
53Organizations and Matrices
54Organization Matrices
55Job Parameters
56Parameters Configuration
57Parameters Configuration
58(No Transcript)
59Compensatory Logic
- It allows compensation among truth value of basic
predicates inside the composed predicate. - It is a not associative system.
- It is a sensitive and interpretable system
- It generalizes Classic Logic in a new and
complete way. - It is possible to model decision making problems
under risk, in a compatible way with utility
theory. - It explains the experimental results of
descriptive prospect theory as a rational way to
think - It allows a new mixed inference way using
statistical and logical inference - Its properties allows a better way to deal with
modeling from natural and professional languages
60Some Scientific Perspectives
- Development of a new fuzzy framework of
Cooperative Games Theory CFL-Based - CFL-based Ontologies using OWL-SWRL-Protégé
Ontologies - Creation of mathematically formal hybrid
frameworks mixing Neural networks, Evolutionary
algorithms, Trees and CFL - Experimental research line about judgment,
election and reasoning from CFL