Compensatory Fuzzy Logic Discovery of strategically useful knowledge - PowerPoint PPT Presentation

1 / 60
About This Presentation
Title:

Compensatory Fuzzy Logic Discovery of strategically useful knowledge

Description:

Learning, Judgment, Reasoning and Decision Making are parts of a same process of ... only is a correct formula (tautology) of Propositional Calculus according to ... – PowerPoint PPT presentation

Number of Views:61
Avg rating:3.0/5.0
Slides: 61
Provided by: modo9
Category:

less

Transcript and Presenter's Notes

Title: Compensatory Fuzzy Logic Discovery of strategically useful knowledge


1
Compensatory Fuzzy Logic Discovery of
strategically useful knowledge
  • Prof. Dr. Rafael Alejandro Espin Andrade
  • Management Technology Studies Center
  • Industrial Engineering Faculty
  • Technical University of Havana
  • CUJAE
  • espin_at_ind.cujae.edu.cu, rafaelespin_at_yahoo.com

2
(No Transcript)
3
(No Transcript)
4
Why a new multivalued fuzzy logic
  • Learning, Judgment, Reasoning and Decision
    Making are parts of a same process of thinking,
    and have to be studied and modeled as a hole.
  • No compensation among truth value of basic
    predicates are an obstacle to model human
    judgment and decision making.
  • Associativity is an obstacle to get compensatory
    operators with sensitivity to changes in truth
    values of basic predicates, and possibilities of
    interpretation of composed predicates truth
    values according a scale

5

Fuzzy Logic based Decision Making Modeling
  • It is not yet enough a formal field
  • Bad behavior of multi-valued logic systems
  • Pragmatic Combination of operators without
    axiomatic formalization
  • Confluence of Objectives using only one operator

6
Compensatory Logic
  • It allows compensation among truth value of basic
    predicates inside the composed predicate.
  • It is a not associative system.
  • It is a sensitive and interpretable system
  • It generalizes Classic Logic in a new and
    complete way.
  • It is possible to model decision making problems
    under risk, in a compatible way with utility
    theory.
  • It explains the experimental results of
    descriptive prospect theory as a rational way to
    think
  • It allows a new mixed inference way using
    statistical and logical inference
  • Its properties allows a better way to deal with
    modeling from natural and professional languages

7
Existing efforts to create fuzzy semantics
standards
  • Using min-max logic
  • Using a pragmatic combination of operators

8
Models
  • Competitive Enterprises Evaluation from
    Secondary Sources. ()
  • Analysis SWOT-OA (SWOTBSC) ()
  • Competences Analysis
  • Composed Inference from Compensatory Logic
    (Useful for Data Mining, Knowledge Discovering,
    Simulation) ()

9
Models
  • Integral Project Evaluation
  • Negotiation
  • New Theoretical Treatment of Cooperative
    n-person Games Theory Quantitative Indexes for
    Decision Making in Business Negotiation (Good
    Deal Index, Convenience Counterpart Index)
  • SDIReadiness

10
Compensatory Conjunction
Geometric Mean
11
Negation
n(x) 1-x.
12
Compensatory Disjunction
Dual of Geometric Mean
13
Zadeh Implication i(x,y)d(n(x),c(x,y))
14
Rule Definition of And
Operators of CFL using SWRL
Rule Definition of Negation
15
Operators of CFL using SWRL
Rule Definition of Or
16
Operators of CFL using SWRL
Rule Definition of Implication
17
Operators of CFL using SWRL
Rule Definition of Equivalence
18
Creating Ontologies from fuzzy trees
  • Create the tree from formulation in natural
    language
  • Create classes using OWL or SWRL (using built
    ins for membership functions)
  • Use the created built ins to create the new
    classes inside SWRL

19
No Associativity Level Properties
20
As higher level a basic predicate be, more
influence it will has in the truth value of the
composed predicate.
c(c(x,y),z)
c(x,y,z)
c(x,y)
z
x
z
y
x
y
Both trees are the same for Associative Logic
Systems.
21
Natural Implication i(x,y)d(n(x),y)
22
Natural Implication
23
Zadeh Implication i(x,y)d(n(x),c(x,y))
24
(No Transcript)
25
Universal and Existential Quantifiers
26
Universal and Existential Quantifiers over
bounded universes of Rn
27
Compatibility with Propositional Classical
Calculus
28
Compatibility with Propositional Classical
Calculus (Kleene Axioms)
Natural Zadeh Ax 1
0.5859 0.5685 Ax 2 0.5122 0.5073 Ax
3 0.5556 0.5669 Ax 4 0.5859
0.5661 Ax 5 0.8533 0.5859 Ax 6
0.5026 0.5038 Ax 7 0.5315 0.5137 Ax
8 0.5981 0.5981
29
Theorem of Compatibility Exclusive Property of
CFL useful to get fuzzy ontologies and connected
it with non fuzzy ones
p is an only is a correct formula (tautology) of
Propositional Calculus according to bivalued
logic if it has truth value greater than 0.5 in
CFL
30
Inference
Logic Inference
Statistical Inference
Composed Inference
Composed Inference It allows to make and to
model hypothesis using Background Knowledge, to
estimate truth value of hypothesis using a sample
and search in parameters space of the model
increasing truth
31
Hypothesis
  • 1. If past time t from t0 is short, PIB at t0 is
    high, and exchange rate peso-dollar is good, and
    inflation too, then inflation at t0t will be
    good. (sufficient condition for goodness of
    future inflation)
  • 2. If past time t from t0 is short, PIB at t0 is
    high, and exchange rate peso-dollar is good, and
    inflation too, then exchange rate at t0t will be
    good. (sufficient condition for goodness of
    future exchange rate)
  • 3. If past time t from t0 is short, PIB at t0 is
    high, and exchange rate peso-dollar is good, and
    inflation too, then PIB at t0t will be high.
    (sufficient condition for goodness of future PIB)

32
Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 1' Hypothesis 2' Hypothesis 3'
0,576160086 0,620615758 0,319922171 0,237583737 0,539710004 0,548489528
0,104861817 0,109086145 0,278621583 0,999987824 0,988994364 0,194511245
0,954676527 0,955654118 0,966207572 0,997833826 0,036824939 0,256004496
0,619516745 0,682054585 0,704510956 0,843278654 0,236556481 0,349107639
0,360116603 0,596395877 0,681417533 0,905856942 0,449708517 0,583310592
0,503173195 0,601806401 0,806558599 0,875167679 0,375314384 0,675469125
0,240645922 0,243684437 0,388070789 0,999988786 0,988986017 0,194481187
0,166064725 0,658210493 0,366102952 0,990618051 0,604258741 0,27023985
0,957234283 0,957808848 0,969335758 0,949513696 0,023763872 0,295017189
0,623564594 0,688110949 0,820055235 0,929246656 0,24713002 0,566004987
0,406582528 0,562805296 0,763656353 0,862017409 0,438632042 0,6827389
0,315003135 0,609940962 0,481272314 0,991513016 0,448097639 0,267486414
0,348881932 0,632987705 0,445100645 0,785234473 0,530719918 0,406855462
0,960632803 0,96120307 0,981985893 0,977613627 0,064500183 0,546627412
0,658386683 0,698912399 0,87122133 0,898146889 0,29047844 0,664809821
0,459222487 0,617040225 0,55840803 0,808412114 0,384684691 0,380968904
0,36295827 0,596407224 0,682984162 0,906088702 0,447004634 0,583111022
0,964920965 0,965265218 0,987462709 0,968219979 0,159229346 0,646455267
0,489849965 0,62196448 0,751265713 0,916814967 0,339829639 0,57450373
0,448296532 0,577103867 0,782469741 0,867623112 0,410028953 0,679530673
0,55878818 0,632516495 0,830278389 0,883071359 0,342921337 0,671518873
0,439202131 0,574390855 0,604586702 0,846168613 0,281018624 0,395033281
0,519845804 0,657303193 0,754040445 0,890357379 0,330713346 0,578926238
33
Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 1' Hypothesis 2' Hypothesis 3'
0,129937234 0,786977784 0,163182976 0,897313418 0,78995843 0,246740413
0,040471107 0,045576384 0,226920195 1 0,98899831 0,194313157
0,96601297 0,966586912 0,974686783 0,999999764 0,031185555 0,255212475
0,316375835 0,614728727 0,512356471 0,999226656 0,439429951 0,291353006
0,099650901 0,662430526 0,589342664 0,999838473 0,642938808 0,545153518
0,218548001 0,549156052 0,721617082 0,999637465 0,508526254 0,645300844
0,031375461 0,036578117 0,219591953 1 0,988998869 0,194313157
0,040525407 0,776150562 0,285353418 0,999998745 0,770101561 0,25525313
0,966018421 0,966594251 0,975835847 0,99982785 0,019121177 0,28913524
0,314847536 0,596608509 0,68759951 0,999859116 0,439114653 0,545002502
0,100646896 0,567339971 0,679511054 0,999611013 0,5903147 0,645417242
0,031430795 0,793473197 0,278579081 0,999998739 0,789884048 0,255253529
0,04487921 0,802329191 0,317793959 0,999085299 0,794414393 0,292286066
0,966014676 0,966568235 0,984519648 0,999968639 0,061925026 0,544546456
0,315423665 0,558446985 0,756193558 0,999660725 0,450390363 0,64520529
0,035867632 0,823077109 0,311327136 0,999080973 0,817720938 0,2923171
0,041885488 0,720353211 0,562956364 0,999833364 0,722064447 0,545194081
0,966016088 0,966509609 0,987918683 0,999924476 0,158754822 0,644565563
0,032816816 0,732504923 0,558813514 0,999832576 0,736638274 0,54520045
0,043013751 0,591969844 0,658918424 0,99959871 0,63696319 0,645474182
0,033966772 0,597042779 0,655685287 0,999596813 0,64484329 0,645483123
0,15293434 0,493060755 0,476469006 0,992585058 0,361083333 0,353165336
0,064133476 0,727586495 0,58911645 0,999644446 0,552232295 0,534562806
34
Membership Functions
as true as false
almost false
35
Membership function
As true as false10 Almost false5
36
As true as false40 Almost false15
37
Gamma Beta Gamma Beta
Inflation 11 5 10.3022482 5.30220976
GIP 2 0 2.70067599 0.12747186
Money Value 7 12 6.8657769 12.0650321
Future Inflation 11 5 6.39146712 6.35080391
Future GIP 2 0 2 0
Future Money Value 7 12 7 12
Time 2 4 1.19916547 4.14284971
38
Relation between CFL and Utility Theory
  • Two possible outlooks of Decision Making problem
    under risk using Compensatory Fuzzy Logic are
    possible
  • First one
  • Security All scenarios are convenient in
    correspondence with its probabilities of
    occurrence (Its is equivalent to be risk
    adverse)

39
Hedges
  • Operators which models words like very, more or
    least, enough, etc. They modifies the truth value
    intensifying or un-intensifying judgments.
  • More used functions to define hedges are
    functions f(x)xa , a is an exponent greater or
    equal to cero. It is used to use 2 and 3 as
    exponents to define the words very and hyper
    respectively, and ½ for more or less.

39
40
Function u(x)ln(v(x) have second diferential
positive (risk averse) when v es sigmoidal.
41
Relation between CFL and Utility Theory
  • Second outlook
  • Opportunity There are convenient scenarios
    according with their probabilities (It is
    equivalent to be risk prone)

42
These preferences are represented by
u(x)-ln(1-v(x) (It is proved by increasing
transformations). This function have negative
second differential (risk prone) when v is
sigmoidal.
43
Teoremas
  • Teorema 1
  • Si f es un predicado difuso que representa la
    conveniencia de los premios. El punto de vista
    de la seguridad usando LDC representa las
    preferencias de un decisor averso al riesgo con
    función de utilidad u(x)ln(f(x)).
  • El punto de vista de la oportunidad usando LDC
    representa las preferencias de un decisor
    propenso al riesgo con función utilidad
    u(x)-ln(1-f(x))

44
Teoremas
  • Teorema 2
  • Dada un decisor con función utilidad u
    acotada en el intervalo (m,M).
  • Si el decisor es averso al riesgo, el
    predicado de la Lógica Difusa Compensatoria que
    representa la conveniencia de los precios es
    v(x)exp(u(x)-M). Si es propenso al riesgo, el
    predicado de la Lógica Difusa Compensatoria que
    representa la conveniencia de los premios es
    v(x)1-exp(1-u(x)-m).

45
Prospect Theory
  • It is a descriptive decision making theory of
    decision making under risks, based on
    experiments. It deserved the nobel prize of
    Economy for Kahnemann and Tervsky in 2003.
  • Individual decision makers are used to be risk
    averse attitude about benefits and risk prone
    attitude about loses
  • More general
  • There is a reference value a, satisfying
    for xlta that utility function is convex and for
    xgta is concave.

46
Prospect Theory
  • Differential of the function for loses is great
    than differential for benefits.
  • Individual decision makers are used to attribute
    not linear weights to utilities using
    probabilities of the correspondent scenarios.
  • That function are used to be concave in certain
    interval 0,b and convex in b,1 b is a real
    number greater than 0 and less than 1.

47
Rational explanation of Experimental Results of
Kahnemann and Tervsky
  • 56 lotteries and its experimental equivalents
    were used from experiments of Kahnemann and
    Tervsky.
  • We estimated the truth value of the statement
    Every lottery is equivalent (in preference) to
    its experimental equivalent, according CFL for
    each preference model Universal (Risk Averse),
    Existential (Risk Prone), Conjunction Rule and
    Disjunction Rule. Best parameters of membership
    functions maximizing the statement truth value
    for all the models.

48
Rational explanation of Experimental Results of
Kahnemann and Tervsky
  • Result Experimental results of Kahnemann and
    Tervsky can be explained as result of a new
    based-CFL rationality working with no linear
    membership functions of probabilities and
    considering that security and opportunity are
    both desirables for individual decision makers.

49
Prize1 Prize2 Prob1 Prob2 Equiv
Universal Existential Conjunction Disjunction
50 150 0.05 0.95 128 0.81046267 0.81043085 0.84579078 0.86240609
-50 -150 0.95 0.05 -60 0.98729588 0.98699553 0.98830472 0.988450983
-50 -150 0.75 0.25 -71 0.98987688 0.9898564 0.99040911 0.990496525
-50 -150 0.5 0.5 -92 0.99282463 0.99193467 0.99355369 0.993616354
-50 -150 0.25 0.75 -113 0.99547171 0.9930822 0.99578486 0.995822571
-50 -150 0.05 0.95 -132 0.99680682 0.98931435 0.99720726 0.997233981
100 200 0.95 0.05 118 0.80956738 0.76106093 0.85650544 0.874712043
100 200 0.75 0.25 130 0.79924863 0.77146557 0.8415966 0.86176461
100 200 0.5 0.5 141 0.77419623 0.76244496 0.82436946 0.845652063
100 200 0.25 0.75 162 0.75472897 0.75240339 0.79542526 0.822098935
100 200 0.05 0.95 178 0.72808136 0.72808118 0.77001401 0.801244793
-100 -200 0.95 0.05 -112 0.99547158 0.99535134 0.99569579 0.995718909
-100 -200 0.75 0.25 -121 0.99634217 0.99633821 0.99644367 0.996456576
-100 -200 0.5 0.5 -142 0.99762827 0.99734518 0.99777768 0.997786734
-100 -200 0.25 0.75 -158 0.99843469 0.99764225 0.99848705 0.998493062
-100 -200 0.05 0.95 -179 0.99905141 0.99589186 0.9991227 0.999126427
0.91683692 0.89594007 0.93079936 0.942636789
50
(No Transcript)
51
Users and Groups
52
Organizations and Matrices
53
Organizations and Matrices
54
Organization Matrices
55
Job Parameters
56
Parameters Configuration
57
Parameters Configuration
58
(No Transcript)
59
Compensatory Logic
  • It allows compensation among truth value of basic
    predicates inside the composed predicate.
  • It is a not associative system.
  • It is a sensitive and interpretable system
  • It generalizes Classic Logic in a new and
    complete way.
  • It is possible to model decision making problems
    under risk, in a compatible way with utility
    theory.
  • It explains the experimental results of
    descriptive prospect theory as a rational way to
    think
  • It allows a new mixed inference way using
    statistical and logical inference
  • Its properties allows a better way to deal with
    modeling from natural and professional languages

60
Some Scientific Perspectives
  • Development of a new fuzzy framework of
    Cooperative Games Theory CFL-Based
  • CFL-based Ontologies using OWL-SWRL-Protégé
    Ontologies
  • Creation of mathematically formal hybrid
    frameworks mixing Neural networks, Evolutionary
    algorithms, Trees and CFL
  • Experimental research line about judgment,
    election and reasoning from CFL
Write a Comment
User Comments (0)
About PowerShow.com