Parameter Estimation - PowerPoint PPT Presentation

1 / 10
About This Presentation
Title:

Parameter Estimation

Description:

Parameter estimation with steady-state data. Exothermic chemical reactor ... Adjusted to generate informative data sets for parameter estimation ... – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 11
Provided by: mls1
Category:

less

Transcript and Presenter's Notes

Title: Parameter Estimation


1
Parameter Estimation
  • Basic principles
  • Parameter estimation with steady-state data
  • Exothermic chemical reactor
  • Parameter estimation with dynamic data

2
Motivation
  • Mathematical models
  • Derived from conservation principles
  • Involve unknown parameters (q)
  • Reaction rate constants, activation energies,
    heat transfer coefficients, relative
    volatilities, diffusion coefficients, etc.
  • Often unavailable from open literature
  • Parameter estimation
  • Laboratory experiments expensive time consuming
  • Alternative is to estimate unknown parameters
    from available data
  • Generate data directly from process being modeled

3
Parameter Estimation Problems
  • Optimization formulation
  • Objective function f(y,u,q)
  • Least-squares error between experimental data
    model predictions
  • Unknown parameters q
  • Decision variables
  • Input variables u
  • Adjusted to generate informative data sets for
    parameter estimation
  • Equality constraints h(y,u,q)
  • Algebraic model equations
  • ODE models must be discretized in time to obtain
    algebraic equations
  • Inequality constraints g(y,u,q)
  • Usually bounds on unknown parameters

4
Steady-State Parameter Estimation
  • Steady-state model
  • Experiments
  • Perform N experiments by varying inputs (u)
  • More experiments than the number of unknown
    parameters N gt p
  • Collect steady-state data for each experiment (m
    measured)
  • Least-squares objective function
  • Prediction error for jth experiment
  • Sum of squared errors
  • Diagonal matrix Q used to adjust weighting
    according to variable scaling measurement
    confidence

5
Linearly Parameterized Models
  • Model equations
  • Parameter estimation problem
  • Objective function quadratic function of
    parameters
  • Constraints linear functions of parameters
  • Can be formulated as quadratic program

6
Least-Square Solution
  • Prediction error
  • Variable definitions
  • Overdetermined least-squares problem

7
Nonlinearly Parameterized Models
  • Model equations
  • Parameter estimation problem
  • Nonlinear objective function
  • Nonlinear equality constraints
  • Requires solution of nonlinear program
  • More difficult problem than for linearly
    parameterized models

8
Exothermic CSTR
  • Unknown model parameters
  • Activation energy (E), frequency factor (k0)
    heat transfer coefficient (U)
  • Subject to lower upper bounds
  • Data collection
  • Select N different residence time tj V/qj
  • Collect steady-state concentration and
    temperature data
  • Steady-state model equations
  • Nonlinear programming problem

9
Dynamic Parameter Estimation
  • Dynamic data provides more information than
    steady-state data
  • Dynamic model
  • Experiments
  • Perform N experiments by varying inputs (u)
  • Collect dynamic data at M time points for each
    experiment
  • Least-squares objective function
  • Prediction error
  • Sum of squared errors

10
Dynamic Model Discretization
  • Motivation
  • Constrained optimization codes require algebraic
    model equations
  • Nonlinear ODE models can rarely be solved
    analytically
  • Discretize time derivatives to obtain algebraic
    equations
  • Simple example
  • Each ODE converted into M algebraic equations
  • Each y(ti) is considered as a variable
  • More accurate stable discretizations preferred
  • Parameter estimation
  • Consider discretized algebraic equations as
    equality constraints
  • Generates large nonlinear optimization problems
Write a Comment
User Comments (0)
About PowerShow.com