Gradient based parameter estimation for signalling pathways - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

Gradient based parameter estimation for signalling pathways

Description:

Adjust parameters to fit model outputs to target values (e.g. time series data, peak height) ... model to the data? To tell us something new that we can test? ... – PowerPoint PPT presentation

Number of Views:43
Avg rating:3.0/5.0
Slides: 24
Provided by: Wilk184
Category:

less

Transcript and Presenter's Notes

Title: Gradient based parameter estimation for signalling pathways


1
Gradient based parameter estimation for
signalling pathways
  • Steve Wilkinson
  • Manchester Interdisciplinary Biocentre,
  • Manchester University UK.

2
Motivation
Mechanistic Models (e.g. ODEs)
  • Quantitative
  • Quantitative

3
Overview
  • Proximate parameter tuning overview
  • Matlab implementation
  • Doing science with parameter estimation
  • Yeast cAMP signalling
  • Translation Initiation

4
Proximate Parameter Tuning Concepts
  • For each uncertain (unknown) parameter estimate
  • Nominal (most likely) value
  • Maximum possible value
  • Minimum possible value
  • 10-3ltk2lt10-1
  • Adjust parameters to fit model outputs to target
    values (e.g. time series data, peak height)
  • while staying as close as possible to the
    nominal point.
  • 10-2ltk1lt100

5
Proximate Parameter Tuning (PPT) Algorithm
Initial Parameter Estimates
Calculate First Order Sensitivities
Repeat
No
Target Feature Values
Simulated Feature Values
Solve LP sub-problem to calculate parameter
adjustments
Converged?
Yes
Solve ODE model with adjusted parameters
Terminate
Fitted parameters
6
Linear Programming Implementation (LP-PPT)
Output Error variables
Parameter Deviation variables
  • Nominal
  • Expt.

Objective function
Minimise
Key constraint
Subject to
Sensitivities
Max error/deviation enforcing constraints
Bounds on max/min parameter deviations
7
Summary of PPT Algorithm
  • Makes use of prior knowledge of parameter values
  • Very general in terms of model and features to be
    fitted
  • Computationally scaleable
  • Sensitivity calculation Nparameters
  • Optimisation sub-problem Nparameters X
    (Nfeatures)3
  • Reasonable convergence (but not guaranteed)
  • Only a local method but could be combined with
    global methods

8
Matlab implementation
  • Makes use of SBToolbox and SBAddOn
  • Efficient calculation of sensitivities by forward
    integration
  • Creates a separate compiled .MEX file for each
    experiment

9
cAMP signalling in yeast
G proteins
Glucose
ATP
Cyr1 (AC)
?
PKA
cAMP
(3 semi-redundant catalytic subunits)
Pde2
Pde1
150 protein targets
AMP
10
Work in progress
Structural determination of signalling pathways
  • Given
  • A pool of interacting species
  • A list of all possible interactions
    (superstructure)
  • Some measured time series data
  • Assuming
  • Generalised kinetics e.g. linlog
  • Determine
  • Smallest subset of interactions to explain
    measured data

11
Translation Initiation Pathway
12
Modelling Strategy
  • Model using mass action kinetics
  • e.g. eIF2GDP eIF2B gt complex
  • Stoichiometric structure 80 known
  • Parameter values lt10 known
  • Some initial concentrations
  • No rate constants

13
Available experimental data
  • Generated here at MIB using techniques developed
    in house
  • McCarthy group can measure how rate of protein
    synthesis varies with varying concentration of
    initiation factors.
  • Data for initiation factors eIF1A, eIF4E, eIF4G
    and eIF5B.
  • Can we use the PPT algorithm
  • To fit our model to the data?
  • To tell us something new that we can test?

14
Model Fitting and Analysis
  • Guess reasonable rate constants (nominal values)
  • Use upper and lower bounds /- 2 orders of
    magnitude
  • Can we use the PPT algorithm
  • To fit our model to the data?
  • To tell us something new that we can test?

15
Fitting to experiment data
16
Fitting to experiment data
17
Fitting to experiment data
18
Fitting to experiment data
19
Parameter Sampling
  • Under-determined system many parameter sets
    that give good fits
  • Start fitting algorithm at different sampled
    points to get many different fitting parameter
    sets
  • Are there any common features that distinguish
    the fitted parameters sets?

20
Translational Flux Control Coefficients

Sensitivity of the flux with respect to each
reaction
Average unfitted pattern Reactions 11 and 12
controlling
Fitted pattern B Reaction 2 controlling
Fitted pattern A Reaction 5 controlling
21
Control of Flux
  • Fitted models suggest reactions 2 and/or 5 most
    important
  • Met-tRNAiMet is usually in abundance,making the
    eIF2B-catalysed
  • step rate-limiting
  • Biochem. Soc. Trans. (2005) 33, (1487-1492)

22
Future work
Automated Model Generation
  • Target model outputs
  • Measured
  • Estimated
  • Intuitive
  • Proximate
  • Parameter
  • Tuning
  • Parameter values ranges
  • Assayed
  • Correlated
  • Calculated de novo
  • Intuitive
  • First guess model
  • Quantitative
  • Predictive

23
Acknowledgements
  • Dicky Dimelow
  • Tom Williamson
  • Martin Brown
  • Doug Kell
  • Pedro Mendes
Write a Comment
User Comments (0)
About PowerShow.com