Title: Mendelian Genetics
1Mendelian Genetics
- Topics
- -Transmission of DNA during cell division
- Mitosis and Meiosis
- - Segregation
- - Sex linkage
-
- - Inheritance and probability
- - Mendelian genetics in humans
- - Independent Assortment
- - Linkage
- - Gene mapping
- - 3 point test cross
?
?
?
?
?
- Tetrad Analysis (mapping in fungi) -
Extensions to Mendelian Genetics - Gene
mutation - Chromosome mutation
?
?
?
?
?
?
2Dates
- Friday Nov. 12 Tuesday 900 am lecture
review - Quiz 3 Tuesday Nov. 16
3Mutation
- Source of genetic variation
- Gene Mutation
- - somatic, germinal
- Chromosome mutations (Ch. 11)
- - structure
- - number
4Mutation
- Gene Mutation
- a------gta Forward mutation
- a ------gta Reverse mutation
- 1. Somatic mutation
- - not transmitted to progeny
- 2. Germinal Mutation
- - transmitted to next generation
5Somatic Mutations
Petal colour Rr red rr white
Plant genotype Rr mutation Rr
rr
6(No Transcript)
7Somatic mutations
8Germinal mutations
AA (blue) Aa ? self ? aa(white)
9Mutant Phenotypes
- Morphological
- Lethal
- Biochemical
- Resistance
- Conditional - DTS (David T. Suzuki)
- (permissive and restrictive
conditions)
10Mutation Frequency
Drosophila eye-colour w ? w 4 x 10-5 per
gamete Humans Hemophilia (X-linked
recessive) 4 x 10-5 per gamete
(1 in 25,000)
It is estimated that up to 30 of cases of
hemophilia have no known family history. Many of
these cases are the result of new mutations. This
means that hemophilia can affect any family.
11Gene Mutation
- Mutations are rare and random
- Ultimate source of genetic variation
-
- Cancer Proto-oncogene ?oncogene ? cancer
- mutation
12Chromosome Mutations
- Gene mutation detected
genetically - Chromosome Mutations detected genetically and
-
cytologically - 1. Structure
- 2. Number
131. Chromosome Structure
- Karyotype
- 1. size and number
- 2. centromere position
- telocentric
- acrocentric
- metacentric
- submetacentric
- acentric
(lost)
14Chromosome Structure
- 3. Heterochromatin pattern
- - heterochromatin (dark)
- - euchromatin (light)
- 4. Banding patterns
- a) staining Giemsa bands
- b) polytene chromosomes (flies)
15G-bands
16Paint of Chr-22
17Paint
18Structural Abnormalities
- Normal a b c d e f
- 1. Deletion a c d e f
- 2. Duplication a b b c d e f
- 3. Inversion a e d c b f
- 4. Translocation
- a b c d j k g h i
e f
19Structural Abnormalities
- 1. Deletions
- deletion homozygote----gtusually lethal
- deletion heterozygote----gt viable
- deletion loop b
- (pairing of a c d
- homologues) a c d
-
- deletion
20Deletion heterozygote
deletion loop
21Deletion Mapping
Prune pn
22Structural Abnormalities
- Deletion notch-wing (Drosophila)
- Phenotype
- Genotype wing survival
- N N normal alive
- N N notch alive
- N N - dead
-
(recessive lethal)
23Genetics of Deletions
- Reduced map distance ( chromosome shortened)
- Recessive lethal
- Deletion loop (detected during meiosis)
24Structural Abnormalities
- 2. Duplications
- tandem duplication
- a b b c d
- maintain original evolve new
- function function
25Unequal crossing over
deletion
Tandem duplication
26Bar Eye Mutation (Dominant)
27Gene Duplication and Evolution
- Gene duplication - Evolution of new function
- Example Hemoglobin genes - duplication
-
- Express in different stages
- embryo fetus adult
-
-
28Structural Abnormalities
- 3. Inversions - different gene order
- - usually viable
- a b c d e f a b e d c f a b e d
c f - a b c d e f a b c d e f a b e d
c f - homozygote heterozygote homozygote
- N N N I
I I - normal (N) inversion (I)
29Cytological consequences of an Inversion Heterozyg
ote Inversion Loop
a b c d e
a d c b e
Fig. 11-21
crossover
X
Inversion Loop
30- Cytological consequences of an Inversion
- Heterozygote Inversion Loop
- Cross-over within an inversion
- dicentric bridge (broken)
- acentric fragment (lost)
- deletions
-
31Inversion heterozygotewith crossing over
Fig. 11-22
32Inversion Heterozygote
- Reduced recombination frequency
- (suppression of crossing over)
- Semisterile
334. Translocation
Translocation Heterozygote (meiosis)
N2
N1
T2
T1
34Translocation
35Fig. 11-24
Translocation heterozygote
36Translocation heterozygoteAdjacent segregation
T1
N2
N1
T2
inviable
37Translocation heterozygoteAlternate segregation
N1
N2
T1
T2
viable
38Translocation
- Change linkage relationships
- (position effects)
- Change chromosome size
- Semisterile - unbalanced meiotic products
normal
Corn Pollen
aborted
aborted ??
39Structural Abnormalities
- Normal a b c d e f
- 1. Deletion a c d e f
- 2. Duplication a b b c d e f
- 3. Inversion a e d c b f
- 4. Translocation
- a b c d j k g h i
e f
40(No Transcript)
41Chromosome Mutation(2. changes in number)
- Euploidy variation in complete sets of
- chromosomes
- Aneuploidy variation in parts of chromosome
- sets
42Euploidy
- 1x monoploid (1 set) n
- 2x diploid (2 sets) 2n
- 3x triploid
- 4x tetraploid
- 5x pentaploid polyploid (gt 3 sets)
- 6x hexaploid
- n chromosomes
in the - gametes
43Polyploids
- Autopolyploids within one species
- Allopolyploids from different, closely
- related species
44Polyploids Larger than Diploids
45Polyploids
- Triploids 3n
- - problems with pairing
during - meiosis
- - unbalanced gametes
- - usually sterile
- Applications seedless fruits, sterile fish
-
aquaculture
46Formation of Triploids
n
3n
n
n
Polar bodies
3n
n
2n
n
n
47Triploids (3x)
- Why cant a triploid produce viable gametes ?
48Fig. 11-5
49Triploids (3x)
Gametes
50Triploids
Gametes
viable
or
Non- viable
51Triploids
- Probability (2x or x gamete)
- ( )
- if x 10 Prob. 0.002 of viable gametes
x - 1
1
2
52Autotetraploid
- Doubling of chromosomes 2x----gt 4x
- Even number of chromosomes normal meiosis
- 2lt----gt2 segregation------gt functional gametes
53Origin of WheatFig. 11-10
2n 14, n x 7
hybrid
2n 28 n 14
Chromosome sets A, B, D 7 7 7
7
14
Triploid
2n 42 x 7 n 21
54Polyploidy
- Plants speciation
- Animals - rare (sex determination)
- - fish (salmon)
- - parthenogenetic animals
123 11 22 12 12
55Plant Polyploids
56Chromosome Mutation(changes in number)
- Euploidy variation in complete sets of
- chromosomes
- Aneuploidy variation in parts of chromosome
- sets
57Aneuploidy
- Nullisomics (2n - 2)
- - lethal in diploids
- - tolerated in polyploids
- Monosomics (2n - 1)
- - disturbs chromosome balance
- - recessive lethals hemizygous
- Trisomics (2n 1)
- - sex chromosomes vs autosomes
- - size of chromosome
58(No Transcript)
59(No Transcript)
60Aneuploidy
- Non-disjunction Gametes
- Meiosis I n 1 n - 1
- Meiosis II n 1 n - 1
n -
- n x n - 1 ---------gt 2n - 1
monosomic - n x n 1 ---------gt 2n 1
trisomic
61Aneuploidy
- Humans (live births)
- Monosomics - XO Turner syndrome
- - no known autosomes
- Trisomics XXY Klinefelter sterile male
- XYY fertile male ( X or
Y gametes) - XXX sometimes normal
- 21 Down
- 18 Edwards
syndromes - 13 Patau
62G-bands
13
18
21
X
Y
63Downs Births per 1000
64(No Transcript)
65Mutations Causing Death and Disease in Humans
- of live births
- Gene mutations 1.2
- Chromosome mutations 0.61
-
66Chromosome Mutations(Humans)
- of spontaneous
abortions - Trisomics 26
- XO 9
- Triploids 9
- Tetraploids 3
- Others 3
- Chromosome 50
- abnormalities
67Chromosome Mutations
- Comparison of euploidy with aneuploidy
- Aneuploids more abnormal than euploids
- likely due to gene imbalance
- Plants more tolerant than animals to aneuploidy
and polyploidy - (animal sex determination)
68Summary
- Mutation - gene
- - chromosome
- (structure, number)
- Detecting - cytology
- - phenotype
- Rate of mutation - low
- Mutation - source of genetic variation
- - evolutionary change
genetic analysis