Title: Biometrical Genetics
1Biometrical Genetics
- Shaun Purcell
- Twin Workshop, March 2004
2Single locus model
- Genetic effects ? variance components
- Genetic effects ? familial covariances
- Variance components ? familial covariances
3ADE Model for twin data
0.25/1
0.5/1
1
1
1
1
1
1
E
A
D
A
D
E
e
a
d
e
d
a
PT1
PT2
4Some Components of a Genetic Theory
- POPULATION MODEL
- Allele genotype frequencies
- TRANSMISSION MODEL
- Mendelian segregation
- Identity by descent genetic relatedness
- PHENOTYPE MODEL
- Biometrical model of quantitative traits
- Additive dominance components
5Some Components of a Genetic Theory
- POPULATION MODEL
- Allele genotype frequencies
- TRANSMISSION MODEL
- Mendelian segregation
- Identity by descent genetic relatedness
- PHENOTYPE MODEL
- Biometrical model of quantitative traits
- Additive dominance components
6MENDELIAN GENETICS
7Mendels Experiments
AA
aa
Pure Lines
F1
Aa
Aa
Intercross
AA
Aa
Aa
aa
31 Segregation Ratio
8Mendels Experiments
F1
Pure line
Aa
aa
Back cross
Aa
aa
11 Segregation ratio
9Mendels Experiments
AA
aa
Pure Lines
F1
Aa
Aa
Intercross
Aa
Aa
aa
AA
31 Segregation Ratio
10Mendels Experiments
F1
Pure line
Aa
aa
Back cross
Aa
aa
11 Segregation ratio
11Mendels Law of Segregation
Gametes
½
A1
Paternal
A2
½
Meiosis/Segregation
12PHENOTYPE MODEL
13Classical Mendelian Traits
- Dominant trait D, absence R
- AA, Aa ? D aa ? R
- Recessive trait R, absence D
- AA, Aa ? D aa ? R
- Co-dominant trait, X, Y, Z
- AA ? X Aa ? Y aa ? Z
14Dominant Mendelian inheritance
½
D
Paternal
d
½
15Recessive Mendelian inheritance
½
D
Paternal
d
½
16Dominant Mendelian inheritance
½
D
Paternal
d
½
17Quantitative traits
18Biometrical Genetic Model
P(X)
Aa
Genotypic means
AA
aa
AA
m a
X
Aa
m d
m
aa
m a
a
-a
d
19POPULATION MODEL
20Population Frequencies
- A single locus, with two alleles
- Biallelic / diallelic
- Single nucleotide polymorphism, SNP
- Alleles A and a
- Frequency of A is p
- Frequency of a is q 1 p
- Every individual inherits two copies
- A genotype is the combination of the two alleles
- e.g. AA, aa (the homozygotes) or Aa (the
heterozygote)
21Genotype Frequencies (random mating)
- A a
- A p2 pq p
- a qp q2 q
- p q
-
- Hardy-Weinberg Equilibrium frequencies
- P(AA) p2
- P(Aa) 2pq
- P(aa) q2
22Before we proceed,some basic statistical tools
23Means, Variances and Covariances
24Biometrical Model for Single Locus
- Genotype AA Aa aa
- Frequency p2 2pq q2
- Effect (x) a d -a
- Residual var ?2 ?2 ?2
- Mean m p2(a) 2pq(d) q2(-a)
- a(p-q) 2pqd
25Biometrical Model for Single Locus
- Genotype AA Aa aa
- Frequency p2 2pq q2
- (x-m)2 (a-m)2 (d-m)2 (-a-m)2
- Variance (a-m)2p2 (d-m)22pq (-a-m)2q2
- VG
- (Broad-sense) heritability at this loci VG /
VTOT - (Broad-sense) heritability SLVG / VTOT
26Additive and dominance effects
- Additive effects are the main effects of
individual alleles gene-dosage - Parents transmit alleles, not genotypes
- Dominance effects represent an interaction
between the two alleles - i.e. if the heterozygote is not midway between
the two homozygotes
27Practical 1
- H\pshaun\biometric\sgene.exe
- What determines additive genetic variance?
- Under what conditions does VD gt VA
28Some conclusions
- Additive genetic variance depends on
- allele frequency p
- additive genetic value a
- as well as
- dominance deviation d
- Additive genetic variance typically greater than
dominance variance
29Average allelic effect
- Average allelic effect is the deviation of the
allelic mean from the population mean,
a(p-q)2pqd - Of all the A alleles in the population
- A proportion (p) will be paired with another A
- A proportion (q) will be paired with another a
AA Aa aa Allelic mean Average effect
a d -a
A p q paqd q(ad(q-p))
a p q qa-pd -p(ad(q-p))
30Average allelic effect
- Denote the average allelic effects as a
- aA q(ad(q-p))
- aa -p(ad(q-p))
- If only two alleles exist, we can define the
average effect of allele substitution - a aA aa
- a (q-(-p))(ad(q-p)) (ad(q-p))
-
- Therefore, aA qa and aa -pa
31Additive genetic variance
- The variance of the average allelic effects
- Freq. Additive effect
- AA p2 2aA 2qa
- Aa 2pq aA aa (q-p)a
- aa q2 2aa -2pa
- VA p2(2qa)2 2pq((q-p)a)2 q2(-2pa)2
- 2pqa2
- 2pq(ad(q-p))2
32Additive genetic variance
- If there is no dominance VA 2pqa2
- If p q VA ½a2
33Additive and Dominance Variance
aa
Aa
AA
Total Variance Regression Variance Residual
Variance Additive Variance Dominance
Variance
34Biometrical Model for Single Locus
- Genotype AA Aa aa
- Frequency p2 2pq q2
- (x-m)2 (a-m)2 (d-m)2 (-a-m)2
- Variance (a-m)2p2 (d-m)22pq (-a-m)2q2
2pqa(q-p)d2 (2pqd)2 - VG VA VD
35VA
36Additive genetic variance VA
-1
d
-1
a
1
1
Dominance genetic variance VD
Allele frequency
0.01
0.05
0.1
0.2
0.3
0.5
37-1 0 1
d
-1 0 1
a
VA gt VD
VA lt VD
Allele frequency
0.01
0.05
0.1
0.2
0.3
0.5
38Cross-Products of Deviations for Pairs of
Relatives
- AA Aa aa
- AA (a-m)2
- Aa (a-m)(d-m) (d-m)2
- aa (a-m)(-a-m) (-a-m)(d-m) (-a-m)2
The covariance between relatives of a certain
class is the weighted average of these
cross-products, where each cross-product is
weighted by its frequency in that class
39Covariance of MZ Twins
- AA Aa aa
- AA p2
- Aa 0 2pq
- aa 0 0 q2
Covariance (a-m)2p2 (d-m)22pq (-a-m)2q2
2pqa(q-p)d2 (2pqd)2
VA VD
40Covariance for Parent-offspring (P-O)
- AA Aa aa
- AA ?
- Aa ? ?
- aa ? ? ?
- Exercise 2 to calculate frequencies of
parent-offspring combinations, in terms of allele
frequencies p and q.
41Exercise 2
- e.g. given an AA father, an AA offspring can come
from either AA x AA or AA x Aa parental
mating types - AA x AA will occur p2 p2 p4
- and have AA offspring Prob()1
- AA x Aa will occur p2 2pq 2p3q
- and have AA offspring Prob()0.5
- and have Aa offspring Prob()0.5
- Therefore, P(AA father AA offspring) p4
p3q - p3(pq)
- p3
42Covariance for Parent-offspring (P-O)
- AA Aa aa
- AA p3
- Aa ? ?
- aa ? ? ?
- AA offspring from AA parents p4p3q p3(pq)
p3 -
43Parental mating types
Pat Mat P(PxM) AA Aa aa
AA AA p4 p4 0 ?
AA Aa 2p3q p3q p3q ?
AA aa p2q2 0 p2q2 ?
Aa AA 2p3q ? ? ?
Aa Aa 4p2q2 ? ? ?
Aa aa 2pq3 ? ? ?
aa AA p2q2 ? ? ?
aa Aa 2pq3 ? ? ?
aa aa q4 ? ? ?
44Covariance for Parent-offspring (P-O)
- AA Aa aa
- AA p3
- Aa p2q ?
- aa ? ? ?
- AA offspring from AA parents p4p3q p3(pq)
p3 - Aa offspring from AA parents p3qp2q2
p2q(pq) p2q
45Parental mating types
Pat Mat P(PxM) AA Aa aa
AA AA p4 p4
AA Aa 2p3q p3q p3q
AA aa p2q2 p2q2
Aa AA 2p3q p3q p3q
Aa Aa 4p2q2 p2q2 2p2q2 p2q2
Aa aa 2pq3 pq3 pq3
aa AA p2q2 p2q2
aa Aa 2pq3 pq3 pq3
aa aa q4 q4
46Covariance for Parent-offspring (P-O)
- AA Aa aa
- AA p3
- Aa p2q pq
- aa 0 pq2 q3
Covariance (a-m)2p3 (d-m)2pq (-a-m)2q3
(a-m)(d-m)2p2q (-a-m)(d-m)2pq2
pqa(q-p)d2 VA / 2
47Covariance for Unrelated Pairs (U)
- AA Aa aa
- AA p4
- Aa 2p3q 4p2q2
- aa p2q2 2pq3 q4
Covariance (a-m)2p4 (d-m)24p2q2
(-a-m)2q4 (a-m)(d-m)4p3q
(-a-m)(d-m)4pq (a-m)(-a-m)2p2q2
0
?
48IDENTITY BY DESCENT
49Identity by Descent (IBD)
- Two alleles are IBD if they are descended from
and replicates of the same recent ancestral allele
2
1
aa
Aa
3
4
5
6
AA
Aa
Aa
Aa
7
8
AA
Aa
50IBS ? IBD
A1A2
A1A3
IBS 1 IBD 0
A1A2
A1A3
IBSIdentity by State
51IBD MZ Twins
AB
CD
AC
AC
MZ twins always share 2 alleles IBD
52IBD Parent-Offspring
AB
CD
AC
If the parents are unrelated, then
parent-offspring pairs always share 1 allele IBD
53IBD Unrelated individuals
AB
CD
If two individuals are unrelated, they always
share 0 allele IBD
54IBD Half Sibs
AB
CD
EE
AC
CE/DE
IBD Sharing Probability 0 ½ 1 ½
55IBD Full Sibs
IBD of paternal alleles
0
1
0 1
1 2
0
IBD of maternal alleles
1
56IBD and Correlation
- IBD ? perfect correlation of allelic effect
- Non IBD ? zero correlation of allelic effect
- alleles IBD Correlation
- at a locus Allelic Dom.
- MZ 2 1 1
- P-O 1 0.5 0
- U 0 0 0
57Covariance between relatives
- Partition of variance ? Partition of covariance
- Overall covariance
- sum of covariances of all components
- Covariance of component between relatives
- correlation of component
- ? variance due to component
58Average correlation in QTL effects
- MZ twins P(IBD 0) 0
- P(IBD 1) 0
- P(IBD 2) 1
- Average correlation
- Additive component 00 0½ 11
- 1
- Dominance component 00 00 11
- 1
59Average correlation in QTL effects
- P-O P(IBD 0) 0
- P(IBD 1) 1
- P(IBD 2) 0
- Average correlation
- Additive component 00 1½ 01
- ½
- Dominance component 00 10 01
- 0
60Average correlation in QTL effects
- Unrelated P(IBD 0) 1
- P(IBD 1) 0
- P(IBD 2) 0
- Average correlation
- Additive component 10 0½ 01
- 0
- Dominance component 10 00 01
- 0
61Mendels Law of Segregation
62IBD sharing for two sibs
Sib 2
A1A3 A1A4 A2A3 A2A4
A1A3 A1A4 A2A3 A2A4
S i b 1
63IBD sharing for two sibs
A1A3 A1A4 A2A3 A2A4
0
1
1
2
A1A3 A1A4 A2A3 A2A4
1
0
1
2
1
0
1
2
2
0
1
1
Expected IBD sharing (20.25) (10.5)
(00.25) 1
Pr(IBD0) 4 / 16 0.25
Pr(IBD1) 8 / 16 0.50
Pr(IBD2) 4 / 16 0.25
64Average correlation in QTL effects
- Sib pairs P(IBD 0) ¼
- P(IBD 1) ½
- P(IBD 2) ¼
- Average correlation
- Additive component ¼0 ½½ ¼1
- ½
- Dominance component ¼0 ½0 ¼1
- ¼
65Summary of shared genetic variance
- MZ VA VD
- P-O ½ VA
- U 0
- DZ, FS ¼(VAVD) ½(VA/2) ¼ (0)
- ½VA ¼VD
- These single locus results can be summed over all
loci to give total genetic variance, heritability.
66(No Transcript)
67Figure 3. BIOLOGICAL PARENT - OFFSPRING
1
1
1
1
1
1
1
1
E
C
A
D
E
C
A
D
d
a
c
e
d
a
c
e
0.5
0.5
0.5
0.5
P
P
MOTHER
FATHER
1
0.5
R
R
0.5
A
0.25
A
1
1
E
C
A
D
D
A
C
E
1
1
1
1
1
1
d
h
c
e
e
c
h
d
P
P
CHILD 2
CHILD 1
68Segregation variance
- If both parents transmit 1 allele
- AO AP/2 AM/2
- which means
- Var(AO) ¼ Var(AP) ¼ Var(AM)
- But this violates Var(AO)Var(AP)Var(AM)
- So this explains the extra path in the P-O model
as Var(A)1, arbitrarily, then - Var(AO) ¼ Var(AP) ¼ Var(AM) ½
69Segregation variance
- Segregation variance (SV) represents the random
variation among the gametes of an individual - i.e. an Aa parent could transmit either A or a
- AO AP/2 AM/2 SP SM
- Var (AO) Var(AP)/4 Var(AM)/4 Var(SP)
Var(SM) - For homozygous locus, Var(S) 0
- For heterozygous locus, Var(S) ?2/4
- Given random mating, average SV 2pq?2/4 VA/4
- As VA is fixed to 1 in the path model, SV ¼ ¼
½