1d dynamics - PowerPoint PPT Presentation

1 / 10
About This Presentation
Title:

1d dynamics

Description:

1d dynamics: saddle-node and cusp bifurcations. Similar systems: Langmuir, enzyme ... Saddle-Node Infinite PERiod (Andronov) Saddle-loop (homoclinic) ... – PowerPoint PPT presentation

Number of Views:24
Avg rating:3.0/5.0
Slides: 11
Provided by: lenpi
Category:
Tags: dynamics | saddle

less

Transcript and Presenter's Notes

Title: 1d dynamics


1
1d dynamics
V(x)
1 steady state
3 steady states
2
1d dynamics saddle-node and cusp bifurcations
Similar systems
Langmuir, enzyme
cut along m2const
Exothermic reaction
3
General 2-variable system
  • Dynamical system
  • Stationary solution
  • Jacobi matrix
  • Stability conditions

4
Modified Volterra Lotka system
  • Modified preypredator system accounting for
    saturation effects
  • Stationary states
  • Determinant of Jacobi matrix
  • existence k lt 1
  • Trace of Jacobi matrix
  • stability c gt 1 2k
  • instability possible if k lt 0.5
  • Hopf bifurcation c 1 2k

0, 0, 1, 0, k, (1 - k) (c k)
k, 1 k, (1 k) k
1 k, k,
5
k0.3, c0.5
k0.3, c0.7
Hopf bifurcation at c0.4
k0.3, c0.3
k0.3, c0.39
6
Dynamics near Hopf bifurcation
  • Jacobi matrix at the bifurcation point c 1
    2k
  • eigenvalues
  • eigenvectors U, U
  • Periodic orbit

Compute
  • Slow dynamics
  • a ??u(t), ? ltlt1
  • ? m?? iw
  • du /dt u(? ????u2)
  • Polar representation
  • u(r/?)eiq??????
  • dr/dt ??r(m? r2)
  • dq/dt w


7
Generalized Hopf bifurcation
dr/dt r(m1 m2 r2 r4) dq/dt w1 w2
r2 Complex rep ur eiq du/dt u(?1 ?2
u2 u4) ?????????????????k mk iwk
snp
subcritical
dr/dt r(m? r2) dq/dt w Complex rep du/dt
u(? u2) ?? m iw
Generic Hopf bifurcation
supercritical
Hopf
8
Bifurcation diagrams
pitchfork
supercritical Hopf
generalized Hopf
subrcritical Hopf
9
Global bifurcations
Saddle-loop (homoclinic)
Saddle-Node Infinite PERiod (Andronov)
10
Dynamics with separated time scales
excitable
oscillatory
bistable
biexcitable
Write a Comment
User Comments (0)
About PowerShow.com