Title: First Principles Thermoelasticity of Mantle Minerals
1First Principles Thermoelasticity of Mantle
Minerals
Renata M. M. Wentzcovitch
Department of Chemical Engineering and Materials
Science U. of Minnesota,
Minneapolis
SISSA/INFM, Trieste
Research in the early 90s (first principles
MD) Current research (NSF/EAR funded)
Geophysical motivation
Thermoelasticity Research tomorrow
2First Principles Thermoelasticity of Mantle
Minerals
Renata M. M. Wentzcovitch
Department of Chemical Engineering and Materials
Science U. of Minnesota,
Minneapolis
SISSA/INFM, Trieste
Research in the early 90s (first principles
MD) Current research (NSF/EAR funded)
Geophysical motivation
Thermoelasticity Research tomorrow
3Research in the early nineties
Development of a variable cell shape (VCS)
molecular dynamics (MD) method (Wentzcovitch,
PRB,1991) Development of first principles MD
I. Self-consistent method with iterative
diagonalization used in MD simulations
(Wentzcovitch and Martins, SSC,1991) II.
Implementation of finite temperature DFT
(Wentzcovitch, Martins, and Allen, PRB
,1992) Some original applications of combined
methodologies Collaborators J. L. Martins
(INESC, Lisbon) and P.
B. Allen (SUNY-Stony Brook, CHiPR)
4First Principles VCS-MD (Wentzcovitch, Martins,
Price, PRL 1993)
Damped dynamics
MgSiO3
P 150 GPa
5Lattice
(a,b,c)th lt (a,b,c)exp 1
Tilt angles ?th - ?exp lt 1deg
Kth 259 GPa Kth3.9
Kexp 261 GPa Kexp4.0
( Wentzcovitch, Martins, Price, 1993)
( Ross and Hazen, 1989)
6Acknowledgements
David Price (UCL-London) Lars Stixrude (U.
of Michigan, Ann Arbor) Shun-ichiro Karato (U.
of Minnesota/Yale) Bijaya B. Karki (Louisiana
S. U.) Boris Kiefer (Princeton U.)
7The Contribution from Seismology
Longitudinal (P) waves
Transverse (S) wave
from free oscillations
8PREM (Preliminary Reference Earth
Model)(Dziewonski Anderson, 1981)
P(GPa)
0
24
135
329
364
9Mantle Mineralogy
MgSiO3
Pyrolite model ( weight)
opx
100
4
Olivine
SiO2 45.0 MgO 37.8 FeO
8.1 Al2O3 4.5 CaO 3.6 Cr2O3
0.4 Na2O 0.4 NiO 0.2 TiO2
0.2 MnO 0.1 (McDonough and
Sun, 1995)
8
cpx
(Mg1--x,Fex)2SiO4
300
(Mg,Ca)SiO3
12
P (Kbar)
Depth (km)
garnets
16
500
?-phase
()
(Mg,Al,Si)O3
20
spinel
()
700
perovskite
MW
(Mg,Fe) (Si,Al)O3
CaSiO3
60
20
40
80
100
0
(Mg1--x,Fex) O
V
10Mantle convection
11Intermediate Model of Mantle Convection
(Kellogg, Hager, van der Hilst, Science, 1999)
123D Maps of Vs and Vp
(Masters et al, 2000)
Vs
V?
Vp
13Lateral variations in VS and VP
(Karato Karki, JGR 2001)
(MLDB-Masters et al., 2000) (KWH-Kennett et al.,
1998) (SD-Su Dziewonski, 1997) (RW-Robertson
Woodhouse,1996)
14Anisotropy
?
?
isotropic
azimuthal
VP VS1 VS2
VP (?,?) VS1 (?,?) ? VS2 (?,?)
transverse
VP (?) VS1 (?) ? VS2 (?)
15Anisotropy in the Earth
(Karato, 1998)
16Mantle Anisotropy
SHgtSV
SVgtSH
17Slip systems and LPO
Zinc wire
Slip system
F
18Anisotropic Structures
(SPO)
(LPO)
Shape Preferred Orientation
Lattice Preferred Orientation
Mantle flow geometry
LPO
Seismic anisotropy
slip system
Cij
19Mineral sequence II
Lower Mantle
(Mgx,Fe(1-x))O
(Mgx,Fe(1-x))SiO3
CaSiO3
20Mineral sequence II
Lower Mantle
(Mgx,Fe(1-x))O
(Mg(1-x),Fex)(Si(1-y),Aly)O3
CaSiO3
21Elastic Waves
P-wave (longitudinal)
S-waves (shear)
n propagation direction
Yegani-Haeri, 1994 Wentzcovitch et al, 1995 Karki
et al, 1997
within 5
22Wave velocities in perovskite (Pbnm)
Cristoffels eq.
with
is the propagation direction
(Wentzcovitch, Karki, Karato, EPSL 1998)
23Anisotropy
P-azimuthal S-azimuthal
S-polarization
(Karki, Stixrude, Wentzcovitch, Rev. Geophys.
2002)
24 Poly-Crystalline aggregate
Voigt-Reuss averages
Voigt uniform strain
Reuss uniform stress
25Polarization anisotropy in transversely isotropic
medium
(Karki et al., JGR 1997 Wentzcovitch et al
EPSL1998)
Seismic anisotropy Isotropic in bulk LM 2 VSH gt
VSV in D
-
(SH-SV)/S Anisotropy ()
-
High P, slip systems MgO 100 ? MgSiO3
pv 010 ?
-
26Acoustic Velocities of Potential LM Phases
(Karki, Stixrude, Wentzcovitch, Rev. Geophys.
2002)
27Effect of Fe alloying
- (Kiefer, Stixrude,Wentzcovitch, GRL 2002)
-
- (Mg0.75Fe0.25)SiO3
4
28TM of mantle phases
CaSiO3
(Mg,Fe)SiO3
5000
Mw
Core T
4000
HA
solidus
T (K)
3000
Mantle adiabat
2000
peridotite
0
40
20
60
80
100
120
P(GPa)
(Zerr, Diegler, Boehler, Science1998)
29Method
Thermodynamic method VDoS and F(T,V) within
the QHA
N-th order finite strain EoS (N3,4,5)
- Density Functional Perturbation Theory for
phonons - xxxxxxxxxxxxxxxxxx(Gianozzi, Baroni, and de
Gironcoli, 1991) - (www.pwscf.com)
- Collaborators Stefano de Gironcoli
and Stefano Baroni
30(Thermo) Elastic constant tensor ?
?kl
equilibrium structure
re-optimize
31Phonon dispersions in MgO
(Karki, Wentzcovitch, de Gironcoli and Baroni,
PRB 61, 8793, 2000)
-
Exp Sangster et al. 1970
32Phonon dispersion of MgSiO3 perovskite
Calc Exp
-
Calc Exp
0 GPa
-
Calc Karki, Wentzcovitch, de Gironcoli, Baroni
PRB 62, 14750, 2000 Exp Raman Durben
and Wolf 1992 Infrared Lu et al. 1994
100 GPa
33MgSiO3-perovskite and MgO
Exp. Ross Hazen, 1989 Mao et al., 1991 Wang
et al., 1994 Funamori et al., 1996
Chopelas, 1996 Gillet et al., 2000 Fiquet et
al., 2000
34Thermal expansivity of MgO and MgSiO3
(Karki, Wentzcovitch, de Gironcoli and Baroni,
Science 1999) (Karki, Wentzcovitch, de Gironcoli
and Baroni, GRL 2001)
? (10-5 K-1)
35Elasticity of MgO
(Karki et al., Science 1999)
36Elasticity of MgSiO3 at LM Conditions
(Wentzcovitch, Coccocioni, and Karki 2002)
37Cij- table
477 536
468 198 172 151
132 135 149
455 509 446
185 164 145 125
126 140
Wentzcovitch et al, 1998 (static) Karki et
al., 1997 (static) Wetzcovitch et al., 1995
(static) Expt. Yegani-Haeri, 1994 Wentzcovitch
et al, 2002 (static)
(300 K)
38Adiabatic bulk modulus at LM P-T
(Karki, Wentzcovitch, de Gironcoli and Baroni,
GRL, 2001)
39LM geotherms
40Summary
- Building a consistent body of knowledge obout LM
phases - We have adequate methods (DFT, QHA) to examine
elasticity of major mantle phases - The objective is to interpret seismic
observations (1D, 3D, anisotropy) in terms of
composition, temperature, flow
41Summary
- Building a consistent body of knowledge obout LM
phases - We have adequate methods (DFT, QHA) to examine
elasticity of major mantle phases - The objective is to interpret seismic
observations (1D, 3D, anisotropy) in term of
composition, temperature, flow
Mineral Physics
Geodynamics
Seismology