Title: Inferring Synchronization under Limited Observability
1Inferring Synchronization under Limited
Observability
(work in progress)
- Martin Vechev, Eran Yahav, Greta Yorsh
- IBM T.J. Watson Research Center
2Concurrency is Hard.
- Assist the programmer in systematically exploring
alternative choices of synchronization - correctness
- synchronization cost
3Inferring Synchronization
- Input
- program P
- specification S
- Output a program P
- P satisfies S
- P obtained from P by adding synchronization
- Challenge eliminate invalid interleavings
while preserving as many valid ones as possible
4Dimensions for Comparing Solutions
- Permissiveness
- P1 is more permissive than P2 when ? P2 ? ? ? P1
? - Synchronization Cost
- P1 has lower cost than P2 when the running time
of synchronization code in P1 is smaller than
that of P2
5Observability
- Connection between permissiveness and
synchronization cost - User input upper bound on synchronization cost
- Limits the observations about program state that
can be made by the synchronization code
6Synchronization under Limited Observability
- Input
- program P
- specification S
- cost function and cost bound C
- Output a program P
- P satisfies S
- P obtained from P by adding synchronization
restricted to C
Is it always possible to find P s.t. ? P ? ?
? P ? ?
NO!
7Maximally Permissive Program
- P is maximally permissive with respect to C
- P satisfies S
- P obtained from P by adding synchronization
restricted to C - for every P obtained from P by adding
synchronization restricted to C - if ? P ? ? ? P ? then P does not satisfy S
8Our Goal
- Input
- program P
- specification S
- observability C
- Output a concurrent program P
- P satisfies S
- P obtained from P by adding synchronization
restricted to C - P is maximally permissive with respect to C
- synchronization code in P must not block
indefinitely
9Synchronization Mechanisms
- Semaphores
- Monitors
- Conditional critical region (CCR)
- Fine grained (e.g., CAS)
- Locks
- ....
10Conditional Critical Regions
- Syntax of CCR
- Declarative
- Synchronization code
- can observe the program state
- does not modify program state
- How to infer guards for CCRs ?
guard ? stmt
11Limited Observability
- Bounded cost of synchronization means restricted
language of guards - LG guard cost(guard) lt bound
- Limits observations about program state thatcan
be made by the guards -
12Example Languages of Guards
- EQ(V)
- boolean combination of equalities between
variable from V and integer constant - (x ! 1 z ! 0)
- EvenOdd(V)
- boolean combinations of predicates even and odd
applied to program expressions over V - e(x) o(y)
13Example
op1 1 x z 1 op2 2 y x 1 op3
3 z y 1 main int x 0, y 0, z 0
op1 op2 op3
!(y 2 z 1)
EQ( x,y,z )
14Example
1,2,30,0,0
yx1
zy1
xz1
e,2,31,0,0
1,e,30,1,0
1,2,e0,0,1
yx1
zy1
zy1
yx1
xz1
xz1
e,e,31,2,0
e,2,e1,0,1
e,e,31,1,0
1,e,e0,1,2
e,2,e2,0,1
1,e,e0,1,1
yx1
yx1
zy1
xz1
zy1
xz1
e,e,e1,2,3
e,e,e1,2,1
e,e,e1,1,2
e,e,e3,1,2
e,e,e,2,3,1
e,e,e2,1,1
15Example
- op1 1 x z 1
- op2 2 y x 1
- op3 3 (x!1 y!0 z!0)? z y 1
- main
- int x 0, y 0, z 0
- op1 op2 op3
-
!(y 2 z 1)
EQ( x,y,z )
16Example
op1 1 x z 1 op2 2 y x 1 op3
3 z y 1 main int x 0, y 0, z 0
op1 op2 op3
!(y 2 z 1)
EQ( x, z )
17Example
- op1 1 (x ! 0 z ! 0) ? x z 1
- op2 2 y x 1
- op3 3 (x ! 1 z ! 0) ? z y 1
- main
- int x 0, y 0, z 0
- op1 op2 op3
-
!(y 2 z 1)
EQ( x, z )
18Example
1,2,30,0,0
x!1 z!0 ?
x!0 z!0?
yx1
zy1
xz1
e,2,31,0,0
1,e,30,1,0
1,2,e0,0,1
x!1 z!0 ?
x!1 z!0 ?
yx1
x!0 z!0?
zy1
zy1
x!0 z!0?
yx1
xz1
xz1
e,e,31,2,0
e,2,e1,0,1
e,e,31,1,0
1,e,e0,1,2
e,2,e2,0,1
1,e,e0,1,1
x!0 z!0?
x!1 z!0 ?
x!0 z!0?
x!1 z!0 ?
yx1
yx1
zy1
xz1
zy1
xz1
e,e,e1,2,3
e,e,e1,2,1
e,e,e1,1,2
e,e,e3,1,2
e,e,e,2,3,1
e,e,e2,1,1
19Our Approach
- Construct transition system of P and S
- Remove a (minimal) set of transitions such that
the result satisfies S - Implement resulting transition system as program
by strengthening guards of CCRs in P
20Removing Transitions
- Which transitions to remove?
- bad-transitions transitions on a path to doomed
state - cut-transitions transitions from non-doomed to
doomed state - In what order to remove transitions?
21Algorithm
- GREEDY(P Program) Program
- R Ø
- while (true)
- ts lt States , Transitions \ R, Init gt
- if valid(ts) return implement(P,R)
- B cut-transitions(ts)
- if B Ø abort cannot find valid
synchronization - select a transition t ? B
- R R ? equiv(t)
-
22Example
op1 1 x z 1 op2 2 y x 1 op3
3 z y 1 main int x 0, y 0, z 0
op1 op2 op3
!(y 2 z 1)
EQ( x, z )
23Example
1,2,30,0,0
yx1
zy1
xz1
e,2,31,0,0
1,e,30,1,0
1,2,e0,0,1
yx1
zy1
zy1
yx1
xz1
xz1
e,e,31,2,0
e,2,e1,0,1
e,e,31,1,0
1,e,e0,1,2
e,2,e2,0,1
1,e,e0,1,1
yx1
yx1
zy1
xz1
zy1
xz1
e,e,e1,2,3
e,e,e1,2,1
e,e,e1,1,2
e,e,e3,1,2
e,e,e,2,3,1
e,e,e2,1,1
24Side Effects
- Transitions associated with the same CCR are
controlled by the same guard - Strengthening guard associated with transition t1
has side-effect - if no guard can distinguish between source(t1)
and sourc(t2) due to limited observability - transition system without t1 but with t2 is not
implementable - Side effect may create new doomed states!
25Step 0
1,2,30,0,0
yx1
zy1
xz1
e,2,31,0,0
1,e,30,1,0
1,2,e0,0,1
yx1
zy1
zy1
yx1
xz1
xz1
e,e,31,2,0
e,2,e1,0,1
e,e,31,1,0
1,e,e0,1,2
e,2,e2,0,1
1,e,e0,1,1
yx1
yx1
zy1
xz1
zy1
xz1
e,e,e1,2,3
e,e,e1,2,1
e,e,e1,1,2
e,e,e3,1,2
e,e,e,2,3,1
e,e,e2,1,1
26Step 1
1,2,30,0,0
x!1 z!0 ?
yx1
zy1
xz1
e,2,31,0,0
1,e,30,1,0
1,2,e0,0,1
x!1 z!0 ?
x!1 z!0 ?
yx1
zy1
zy1
yx1
xz1
xz1
e,e,31,2,0
e,2,e1,0,1
e,e,31,1,0
1,e,e0,1,2
e,2,e2,0,1
1,e,e0,1,1
x!1 z!0 ?
x!1 z!0 ?
yx1
yx1
zy1
xz1
zy1
xz1
e,e,e1,2,3
e,e,e1,2,1
e,e,e1,1,2
e,e,e3,1,2
e,e,e,2,3,1
e,e,e2,1,1
27Step 2
1,2,30,0,0
x!1 z!0 ?
x!0 z!0?
yx1
zy1
xz1
e,2,31,0,0
1,e,30,1,0
1,2,e0,0,1
x!1 z!0 ?
x!1 z!0 ?
yx1
x!0 z!0?
zy1
zy1
x!0 z!0?
yx1
xz1
xz1
e,e,31,2,0
e,2,e1,0,1
e,e,31,1,0
1,e,e0,1,2
e,2,e2,0,1
1,e,e0,1,1
x!0 z!0?
x!1 z!0 ?
x!0 z!0?
x!1 z!0 ?
yx1
yx1
zy1
xz1
zy1
xz1
e,e,e1,2,3
e,e,e1,2,1
e,e,e1,1,2
e,e,e3,1,2
e,e,e,2,3,1
e,e,e2,1,1
28Algorithm
- GREEDY(P Program) Program
- R Ø
- while (true)
- ts lt States , Transitions \ R, Init gt
- if valid(ts) return implement(P,R)
- B cut-transitions(ts)
- if B Ø abort cannot find valid
synchronization - select a transition t ? B
- R R ? equiv(t)
-
29Algorithms
- Greedy algorithm
- removes cut-transitions
- result satisfies spec (or abort)
- if there are no side-effects then the result is
maximally permissive - can be extended to be maximally permissive
- polynomial
- Exhaustive algorithm
- removes bad-transitions
- result satisfies spec (or abort)
- (all) maximally permissive
- exponential
30Initial Evaluation
- Prototype
- greedy algorithm
- transition system constructed using SPIN
- Examples
- Dining philosophers
- Asynchronous counters
- Race correction
31Infinite Transition System
- Finite state abstraction
- Same algorithm
32Example
op1 1 x x 1 2 y y 1 3 goto
1
main x 0, y 0 op1 op2
op2 4 x x - 1 5 y y - 1 6 goto
4
pc2 6 ? even(xy)
EvenOdd(x,y)
33Example
op2 4 x x - 1 5 odd(xy) ? y y - 1
6 goto 4
op1 1 odd(xy) ? x x 1 2 y y 1
3 goto 1
Result satisfies the spec but might block
pc2 6 ? even(xy)
EvenOdd(x,y)
34Inferring Guards under Abstraction
- Conservatively eliminate potentially stuck states
- cannot guarantee maximally permissive
- Refine when state becomes potentially stuck
- terminates if there is a finite bisimulation
quotient - Specialized abstractions for stuckness
- related to abstractions for termination
35Summary
- Greedy and exhaustive algorithms for inferring
guards of CCRs - maximally permissive programs
- limited observability
- side effects
- implementability
- observational equivalence
- characterizing observable states
- minimize synchronization cost
36Related Work
- Recovery and predication mechanisms
- STM, Isolator, Tolerace
- Synthesis from temporal specification
- controller synthesis
- Program repair as a game
- memoryless maximal winning strategy
37Ongoing and Future Work
- Greedy algorithm based on domination
- Conditions for maximal permissiveness
- Minimize synchronization cost for given
observability - Complexity of guard inference (NP-hard,coNP-hard,?
2) - Abstraction for stuck states
- Temporal safety and liveness properties
- Infer other synchronization mechanisms
- meta-data, atomic sections, non-blocking
38Problem on Graphs
- Input
- graph G (V,E)
- initial nodes Init ? V
- equivalence relation ? ? E?E
- E is admissible iff
- E is closed under ?
- every node reachable from Init using only edges
in E has at least one outgoing edge in E - Search problem find admissible E such that
for every E if E ? E then E is not
admissible - Decision problem given k, is there a solution E
to the search problem and E k - Complexity NP-hard, coNP-hard, in ?2
39Reduction from 3SAT
lij ? x1, ..., xn, x1, ..., xn
40Construction
? ? (x1 ? x2 ? x3) ? (x1 ? x4 ? x3)
l11
l21
x1
x1
l12
x2
l22
x4
a
l13
l23
x3
x3
c
b
c
b
a
41Reduction from 3SAT
- Build problem of decision problem from gadgets
- (G(E,V), Init, ?, k)
- NP-hard
- k 2n 2m m 2
- ? is sat iff (G, Init, ?, k) is YES
- coNP-hard
- k 2n 2m 2
- ? is not sat iff (G, Init, ?, k) is YES