Title: ENG 0310 Design Contest: Base Isolation System
1ENG 0310 Design Contest Base Isolation System
Goal design a spring/dashpot suspension system
to hold a laser as steady as possible on a
vibrating base.
2Important Dates
- Friday, November 14 Submit names of group
members and team name on paper before 4pm.
Maximum of 5 students per group. - Friday, November 21 Submit design and drawings.
- Fabrication can start as soon as the design is
submitted. - Monday, December 8 Final demonstration/contest,
Final reports due.
3Vibration Control Base Isolation
Soft, Springy Mount
4(No Transcript)
5The Christchurch Arts CenterWith and Without
Base Isolation
6Other Suspension Systems (same idea) Keeps
equipment steady while the supports vibrate!
7Cars
8Printed Circuit Board Manufacture
9Everyday examples
10Free vibrations
C
- Vibration occurs at the system-dependent natural
freqency. - The oscillations decay exponentially (if
) - Initial condidtions x0x(0) and v0 v(0)
determine the amplitude and phase
11Forced Vibrations Periodic forcing
12Typical Response
Displacement
Time
Transient vibrations xh(t) at the natural
frequency. Depend on I.C. These decay
exponentially with time.
Steady-state Vibrations xp(t) at the forcing
frequency Independent of I.C. These do not decay.
Total response x(t)xh(t)xp(t)
Amplitude of the steady-state vibrations is
(very) large if the forcing frequency is at or
near the system natural frequency.
13The Steady State Response Damped
C
Amplitude X/(F0/k)
14Vibration under base excitation
15Base Excitation
16Base Excitation
17Steady state response
Displacement
Time
Transient vibrations xh(t) at the natural
frequency. Depend on I.C. These decay
exponentially with time.
Steady-state vibrations xh(t) at the forcing
frequency Independent of I.C. These do not decay.
Steady state response
18Amplitude of the steady state response
Isolation
Amplitude X/Y
Amplification
w/wn
Pick a (soft) spring so that (wn)2k/mlt w2/2. Use
light damping
19- Design parameters
- The laser is the Apollo MP2703B Classic Comfort
Laser Pointer (Figure 2). Its mass is 49 g is
13 cm long and has a diameter of 1.4 cm. - The table will vibrate over a range of
frequencies fw/2p from 0 to 7 Hz, or 0ltwlt14p
radians/sec. The peak-to-peak amplitude of motion
for the table is 2Y0.6 cm. - You must be able to affix your isolation system
to the square surface of the shake table, which
has side length 0.3 meters. - Your laser will project its beam onto a screen
b1 meter from the table edge. - When the table is shaken at frequencies of 5 Hz
or higher, the peak-to-peak amplitude A2X of the
lasers projection on the screen must be less
than 0.3 cm. The best designs will hold the laser
beam to an even smaller displacement - When the table is shaken at frequencies below 5
Hz, the peak-to-peak displacement of the lasers
projection must be less than 2.4 cm. - Minimize the weight.
20Note on the Spring-Mass Frequency
mg
21Works for any spring system!
22Car Suspension
- Wheel Motion
- Isolation when (wn)2k/mlt w2/2(2pv/L)2/2
- Typical car fn1 Hz wn2p radians/sec
- Isolates for bump-spacing Lltv/ meters. (v in
meters per second) - If v25mph10m/sec maximum bump spacing is 7
meters