Title: Representation of signals and systems using MATLAB
1Representation of signals and systems using
MATLAB
2Power of MATLAB
- Matrix oriented numerical operations
- MATLAB integrates
- mathematical computing
- programming language
- graphics
- Library of MATLAB mathematical functions
- Possibility of creating new functions
3The purpose of this talk is to illustrate by
examples the application of MATLAB functions in
signal processing.
4Continuous and discrete systemsbasic
characteristics
5(No Transcript)
6Impulse response h (n) Frequency response H
(ej?) Transfer function H (z) Difference
equation Block diagram
7Continuous signal in MATLAB
8Continuous signal can be represented as a
sequence of instantaneous values in discrete time
intervals tnT
Continuous signal Serbian word slika
gtgt load slika gtgt t01/8000(length(slika)-1)/8000
gtgt plot(t,slika)
9Continuous signal Serbian word slika,
spectrogram
gtgt specgram(slika,256,8000,256,128)
10Continuous signal Serbian word slika, spectrum
gtgt SL,f,tspecgram(slika,256,8000,256,128)gtgt
waterfall(t,f,abs(SL))gtgt axis(0,0.7,0,4000,0,4)
11Continuous system in MATLAB
12Continuous system
Transfer function
gtgt z,p,Cellipap(5,0.5,40) gtgt ACpoly(z) A
0.0508 0 0.2669 0
0.3092 gtgt Bpoly(p) B 1.0000 1.1536
2.0624 1.4702 0.9642 0.3092
13Continuous system complex s plane
gtgt splane(z,p)
14Continuous system magnitude response
gtgt Hafreqs(Cpoly(z),poly(p),w)gtgt
plot(w,(abs(Ha)))
15Continuous system electrical scheme
MATLAB DrawFilt Toolbox
16Discrete signal in MATLAB
17- Discrete signal time domane representation
- Sequence xn
Generated signal
gtgtxsin(2pi5(0127)/128) gtgtstem(0127,x)
Imported signal, vowel e
gtgtload e gtgtxee(10011128) gtgtstem(xe)
18- Discrete signal frequency domain representation
spectrum
gtgtxsin(2pi5(0127)/128) gtgtXX,ffreqz(x,1,40
96,8000) gtgtplot(f,abs(XX))
Segment of the vowel e (Serbian) gtgtXefreqz(xe,1
,4096,8000) gtgtplot(f,abs(Xe))
19Discrete signal representation in frequency
domain Discrete Fourier Transform, DFT
sequence Xk
gtgtxsin(2pi5(0127)/128) gtgtXfft(x)
gtgtstem(abs(X))
Segment of the vowel e (Serbian) gtgtXEfft(xe) gt
gtstem(abs(XE))
20Discrete system in MATLAB
21Discrete systems
- Transfer function of an IIR (Infinite Impulse
Response) system
- Transfer function of an FIR (Finite Impulse
Response) system
22Discrete system IIR
Transfer Function
gtgt A,Bellip(5,0.5,40,0.4) A 0.0528
0.0797 0.1295 0.1295 0.0797 0.0528 B
1.0000 -1.8107 2.4947 -1.8801
0.9537 -0.2336
23Discrete system IIR
Pole-zero location in the complex z-plane gtgt
zplane(A,B)
24Discrete system IIR
Impulse response gtgt impz(A,B,50)
25Discrete system IIR
Magnitude response gtgt H,ffreqz(A,B,1024,1)gtgt
plot(f,abs(H))
Magnitude
Normalized Frequency
26Discrete system block diagram
MATLAB DrawFilt Toolbox
27Example of design and analysis of a discrete
system using MATLAB
28System design
Specifications F08000 Hz Fp1500 Hz Fs2000
Hz ?p0.01 ?s0.01 Linear phase
Specifications can be met with an optimal FIR
filter.
29Design and analysis of an FIR system
gtgt N,fo,mo,w remezord( 1500 2000, 1 0,
0.01 0.01, 8000 )gtgt a remez(N,fo,mo,w)gtgt
stem(0N,a)
30Design and analysis of an FIR system
gtgt zplane(a,1)
31Design and analysis of an FIR system
gtgt H,ffreqz(a,1,1024,8000)gtgt plot(f,abs(H))
Magnitude
Frequency Hz
32(No Transcript)
33(No Transcript)
34(No Transcript)
35Processing of discrete signal using MATLAB
36Discrete system processing of the signal
gtgt A,Bellip(5,0.5,40,0.4) gtgt
yefilter(A,B,xe)
A,B
ye(n)
xe(n)
37Discrete system processing of the signal
A,B
xe(n)
ye(n)
Spectrogram vowel e
gtgt specgram(xe)
38Discrete system processing of the signal
A,B
ye(n)
xe(n)
Spectrogram, vowel e at the output of the
system
gtgt specgram(ye)
39Multirate systemsusing MATLAB
40Multirate systemsbasic processing
- Decimation
- Interpolation
- Efficient filtering EMF Toolbox
- Filter banks
41Multirate systems
Signal compression down-sampling
gtgt xsin(2pi5(063)/128) gtgt xdx(1463)
42Multirate systems
Signal expansion up-sampling
L
xd(n)
xu(n)
gtgt xuzeros(1,4length(xd))gtgt
xu(14length(xu))xd
43Multirate systems
Interpolator, example 1
gtgt yinterp(xd,4)
44Multirate systems
Interpolator, example 2
gtgt A,Bellip(5,0.5,40,0.20)gtgt
yfilter(A,B,xu)
45Modulations and demodulations using MATLAB
46- Modulations
- gtgt y modulate(x,fc,fs,METHOD,opt)
- Amplitude modulations amdsb-sc, amdsb-tc, amssb
- Frequency modulation fm
- Phase modulations ppm, pwm
- Quadrature amplitude modulation qam
47- Demodulations
- gtgt y demod(x,fc,fs,METHOD,opt)
- Amplitude modulations amdsb-sc, amdsb-tc, amssb
- Frequency modulations fm
- Phase modulations ppm, pwm
- Quadrature amplitude modulation qam
48Illustrative example SSB modulation of the
sequence representing Serbian word
zadivljenost gtgt load zadivljenost gtgt zad
zadivljenost gtgt y modulate(zad,0.25,1,'amssb')
Time-domain presentation
49Illustrative example Serbian word zadivljenost
spectrum analysis
gtgt load zadivljenost gtgt zad zadivljenost gtgt
Zspecgram(zad,256,1,256,128) gtgt
n08000/618000-8000/61 f01/2560.5 gtgt
waterfall(n',f',abs(Z)), axis(0,8000,0,0.5,0,2)
Frequency-domain presentation
50Illustrative example Serbian word zadivljenost
spectrum analysis of the SSB modulated signal gtgt
y modulate(zad,0.25,1,'amssb') gtgt
ZYspecgram(y,256,1,256,128) gtgt
n08000/618000-8000/61 f01/2560.5 gtgt
waterfall(n',f',abs(ZY)), axis(0,8000,0,0.5,0,2
)
51Illustration of solving a complex design problem
in MATLAB
52Solution to be presented Design of high-speed
low-sensitivity IIR filtersimplemented as tapped
cascaded interconnection of all-pass sub-filters
53Basic references 1 T. Saramäki and M. Renfors,
A novel approach for the design IIR filters as a
tapped cascaded interconnection of identical
allpass subfilters, in Proc. 1987 IEEE Int.
Symp. Circuits Syst. (Philadelphia,
Pennsylvania), vol. 2, pp. 629?632, May 1987.
2 H. Johansson and L. Wanhammar, High-speed
recursive filter structures composed of identical
all-pass subfilters for interpolation,
decimation, and QMF banks with perfect magnitude
reconstruction, IEEE Trans. Circuits and
Systems-II Analog and Digital Signal Processing,
vol. 46, no. 1, pp. 16?28, January 1999. 3 Lj.
Milic and M. Lutovac, "High speed IIR filters for
QMF banks," TELSIKS, Ni, Yugoslavia, 2001, pp.
171-174. 4 M. D. Lutovac and Lj. Milic, Design
of optimal halfband FIR filters with minimum
phase, ETRAN Conference, June 2003, Herceg-Novi,
Montenegro, Avilable http//kondor.etf.bg.ac.yu/
lutovac/pdf/etan03lm.pdf
54- FDFDesignMATLAB program for designing high-speed
half-band digital filters (Lutovac and Milic,
2003.) - Start-up prototype filter is a minimum phase
half-band FIR filter 1-3 - Transformation based on all-pass sub-filters
from an IIR prototype 1-3 - For solving numerical problems in computing
coefficients of the half-band FIR prototype, new
original expressions have been derived using
Mathematica 4
55Transformation of an FIR filter using the
all-pass sectionsfrom an IIR prototype
56Start program FDFDesign
gtgtFDFDesign
57gtgtFDFDesign n2, fp0.2
Half-band filter design
58Programmable power-complementary filter
pairs Using the half-band filter solution from
FDFDesign, and simple approach given in 5 and
6, low-pass/high-pass power-complementary
filter pairs with a programmable crossover
frequency can be easily obtained. 5 L. Milic,
and T. Saramaki, Three classes of IIR
complementary filter pairs with an adjustable
crossover frequency, Circuits and Systems, 2003.
ISCAS '03. Proceedings of the 2003 International
Symposium on, Volume 4, pp. 145 148, May 25 -
28, 2003. 6 L. Milic, and T. Saramaki,
Power-complementary IIR filter pairs with an
adjustable crossover frequency, Facta
Universitatis, Ser. Elec. Energ. vol. 16, pp.
295-304, Dec.2003.
59Example of programmable power-complementary filter
pair. New filter pair is obtained by computing
only three constants in all-pass branches.
60Thank you for your attention!