WinBugs with some PK examples - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

WinBugs with some PK examples

Description:

sigma 1.067 0.075 0.0009 4001 20000. Slide 24. winBUGS. Oct2001. NOVARTIS ... Sigma 1.041 0.073 0.0010 4001 20000. tauab[1,1] 17.740 11.30 0.2633 4001 20000 ... – PowerPoint PPT presentation

Number of Views:183
Avg rating:3.0/5.0
Slides: 30
Provided by: PeterB189
Category:

less

Transcript and Presenter's Notes

Title: WinBugs with some PK examples


1
WinBugs with some PK examples
  • Peter Blood
  • CP-Bios
  • Novartis Horsham Research Centre

2
Examples
  • IV dose
  • Cadralazine
  • Oral 1 compartment
  • Theophylline

3
A Simple Hierarchical Structure
4
IV - Cadralazine
  • Taken IV by patients for cardiac failure
  • Data consisted of 10 patients on 30mg
  • Original Bayesian analysis by Wakefield,
    Racine-Poon et al
  • (Applied Statistics 43,No 1, pp201-221,1994)
  • Analysed in BUGS with a linearised model
  • See version 0.6 manual addendum
  • Can now be analysed with nonlinear Model in
    PkBUGS
  • Will consider a non-linear model with winBUGS

5
Cadralazine Data (from Wakefield et al)
6
IV Cadralazine Equation
7
Cadralazine Models
  • Analysed in BUGS v0.6 as product formulation of
    the bivariate nomal
  • Log V N(ua, ?a) I (La,Ua)
  • Log Cl log V N(k0k1(Log V - c), ?b) I(Lb,Ub)
  • Could now analyse in winBUGS 1.3 as multivariate
  • muab 12 dmnorm(mean12, prec12,12)
  • tauab12,12 dwish(R12, 12,2)
  • Could now use PKBUGS (see David Lunns example)

8
Cadralazine Doodle
9
Cadralazine Results
Mean (sd) BUGS 0.6 winBUGS PKBUGS
p.lgcl 1.051(0.147) 1.061 (0.131) 1.054 (0.129)
p.lgvol 2.838 (0.072) 2.669 (0.043) 2.683 (0.056)
tauC - 285.9 (52.96) 232.8 (51.18)
sigma - 0.060 (0.006) 0.066 (0.007)
10
Theophylline Example
  • Bronchodilator (methyl xanthine)
  • Kinetics of drugs anti-asthmatic properties
  • 12 Subjects measured 11 times over 25 hours
  • Oral first order one compartment model
  • First Analysed by Sheiner and Beal with NONMEM
  • Also by Pinherio and Bates in S using NLME
  • And in SAS using proc NLMIXED

11
References on Theophylline
  • Davidian Giltinan 1995
  • Non linear Models for Repeated
  • Measurement Data, pub Chapman Hall.
  • Pinheiro Bates (1995)
  • Analysed in SAS (Proc Nlmixed)
  • Reanalysed in SPLUS (NLME)
  • Boeckman, Sheiner Beal 1992
  • (Nonmem Users Guide Part V)
  • Created with Body weight as a Cl covariate
  • Absorption assumed same for all subjects
  • 1 Compartment model
  • Volume in L/kg, Clearance in L/hr/kg

12
Theophylline Example 12 adults from NONMEM file
13
Theophylline Example
14
Open Oral Model for Theophylline
15
Theophylline Central Code
  • for(i in 1nSUBJ)
  • for(j in 1nTIME)
  • mui,j lt- Doseiexp(logka)
  • (exp((-Timei,j)exp(lgcli-lgvol
    i))
  • - exp((-Timei,j)exp(logka)))
  • /(exp(lgvolilogka)-exp(lgcli))
  • Conci,j dnorm(mui,j, epsilon)
  • end of j time loop
  • end of i subject loop
  • Conci,j dt(mui,j,epsilon,4)

16
Prior Information
  • phi dnorm(-3.5, 500) log(Cl)
  • theta dnorm(-1,100000) log(V)
  • logka dnorm( 0.5, 150)
  • eta1 dgamma(40, 1) inter
  • eta2 dgamma(12, 3) inter
  • epsilon dgamma(0.001,0.001) intra
  • for(i in 1nSUBJ)
  • lgcli dnorm(phi,eta1)
  • lgvoli dnorm(theta,eta2)

17
Initial Conditions (1st)
  • 1st set of initial start conditions
  • list(phi -4.0,
  • theta -1.5,
  • logka 0.3,
  • eta1 24,
  • eta2 2,
  • epsilon 0.7,
  • lgcl c(-4.0,-4.0,-4.0,-4.0,-4.0,-4.0,
  • -4.0,-4.0,-4.0,-4.0,-4.0,-4.0),
  • lgvol c(-1.5,-1.5,-1.5,-1.5,-1.5,-1.5,
  • -1.5,-1.5,-1.5,-1.5,-1.5,-1.5)
  • )

18
Data Collection Posterior Statistics
  • for(i in 1nSUBJ)
  • Dosei lt- Zi,1,4
  • for(j in 1nTIME)
  • Timei,j lt- Zi,j,5
  • Conci,j lt- Zi,j,6
  • lgcl.mn lt- mean(lgcl)
  • lgvol.mn lt- mean(lgvol)
  • mnCl lt- exp(lgcl.mn)
  • mnVol lt- exp(lgvol.mn)
  • Sigma lt- 1.0/sqrt(epsilon)
  • for(i in 1nSUBJ)
  • Cli lt- exp(lgcli)
  • Voli lt- exp(lgvoli)

19
Theophylline Data-1st Subject
  • list(nSUBJ 12, nTIME 11,
  • Z structure(
  • .Datac(
  • 1, 1, 79.60, 4.02, 0.00, 0.74,
  • 2, 1, 79.60, 4.02, 0.25, 2.84,
  • 3, 1, 79.60, 4.02, 0.57, 6.57,
  • 4, 1, 79.60, 4.02, 1.12,10.50,
  • 5, 1, 79.60, 4.02, 2.02, 9.66,
  • 6, 1, 79.60, 4.02, 3.82, 8.58,
  • 7, 1, 79.60, 4.02, 5.10, 8.36,
  • 8, 1, 79.60, 4.02, 7.03, 7.47,
  • 9, 1, 79.60, 4.02, 9.05, 6.89,
  • 10, 1, 79.60, 4.02,12.12, 5.94,
  • 11, 1, 79.60, 4.02,24.37, 3.28,
  • ............
  • 132,12, 60.50, 5.30,24.15, 1.17),
    .Dimc(12,11,6)))

20
Start of 2 chains for log(Cl) (Theophylline)
21
3rd Continuation of chains for log(Cl)(Theophylli
ne)
22
History Chains (Theophylline)
23
Results for Theophylline
  • node mean sd MC err start sample
  • epsilon 0.891 0.124 0.0016 4001 20000
  • eta1 36.34 6.035 0.0672 4001 20000
  • eta2 4.734 1.124 0.0085 4001 20000
  • Lgcl.mn -3.352 0.045 0.0011 4001 20000
  • Lgvol.mn -0.719 0.028 0.0007 4001 20000
  • Logka 0.483 0.056 0.0013 4001 20000
  • Phi -3.432 0.039 0.0006 4001 20000
  • Theta -0.999 0.003 0.00002 4001 20000
  • sigma 1.067 0.075 0.0009 4001 20000

24
Geweke Cross-Correlation(chain 1)
Geweke (Z) Variable Lgcl.mn Lgvol.mn Phi Theta Sigma
0.608 Lgcl.mn 1.000
-1.500 Lgvol.mn -0.488 1.000
1.080 Phi 0.525 -0.252 1.000
-0.882 Theta 0.002 -0.013 -0.001 1.000
-0.611 Sigma -0.211 0.125 -0.102 0.005 1.000
25
Multivariate Theophylline
  • vague prior information
  • muab12 dmnorm(mean12,precn12,12)
  • tauab12,12 dwish(omega12,12,2)
  • extra initial conditions
  • list(
  • mean c(0,0),
  • precn structure(.Datac(1.0E-6,0,0,1.0E-.Dimc(
    2,2)),
  • omega structure(.Datac(0.1,0,0,0.01),
    .Dimc(2,2)))

26
Results from Multi-variate Model (Theophylline)
  • node mean sd MC err start sample
  • epsilon 0.937 0.130 0.0018 4001 20000
  • Logka 0.463 0.058 0.0014 4001 20000
  • muab1 -3.259 0.102 0.0015 4001 20000
  • muab2 -0.738 0.072 0.0009 4001 20000
  • Sigma 1.041 0.073 0.0010 4001 20000
  • tauab1,1 17.740 11.30 0.2633 4001 20000
  • tauab1,2 -5.524 11.50 0.2628 4001 20000
  • tauab2,1 -5.524 11.50 0.2628 4001 20000
  • tauab2,2 32.080 21.60 0.4639 4001 20000

27
Theophylline
Software Procedure RESULTS Log(ka) Log(V) LOG(Cl) LOG(Ke)
winBUGS M-H 0.482 -0.999 -3.432
NONMEM Taylor 0.456 -0.802 -3.160
S NLME 0.453 -0.782 -3.214
SAS NLMIXED 0.453 -0.795 -3.169
SAS NLMIXED 0.481 -3.227 -2.459
Davidian Giltian GTS 0.265 -0.795 -3.207
VC GLS 0.453 -0.748 -3.264
LB GLS 0.329 -0.789 -3.214
28
Conclusions
  • Run some examples of PK models in winBUGS.
  • IV and Oral One compartment examples.
  • Cadralazine and Theophylline
  • Compared with results from other sources
  • Looked at convergence issues in CODA
  • Perhaps you should now try PKBUGS (28models)!
  • Plea for further development of PKBUGS

29
The End
  • Any
  • Questions
  • ?
Write a Comment
User Comments (0)
About PowerShow.com