Title: Hierarchical Linear Models
1Hierarchical Linear Models
2Revisit Hierarchical Model
hyper-prior
- Rat tumor experiments, j1,2,,71
hyper-parameters
super-population prior
parameters
likelihood
3Meta-analysis of beta-blocker
hyper-prior
- Beta-blocker trials, j1,2,,22
?0, t
hyper-parameters
super-population prior
?22
parameters
likelihood
y22
4In the form of a HLM
hyper-prior
?0, t
ß0, t
hyper-parameters
super-population prior
?22
ß1 ß2 ß3
ß (ß1,ß2, , ß22)
likelihood
y22
known
51 set of random effects
super-population prior
ß0
ß0
hyper-prior
Noninformative
Informative Empirical
6WinBUGS code for 1 set of RE
- model
-
- for( i in 1 N )
- Yi dnorm(betai,tau.yi)
- betai dnorm(beta0,tau.beta0
-
- beta0 dflat()
- tau.beta0 dchisq(2)
-
- data
- list(N22,Yc(), tau.yc())
likelihood
super-population prior
hyper-prior
7The School Example
- Yij bj ? bj ?ij,
- with ?ij N(0,sy2) bj N(0,sb2)
- for student i in school j. There is a random
school effect - YN(Xß, sy2I)
8- model
-
- for( i in 1 N ) N number of students
- Yidnorm(bi,tau.y)1/sigma.y2
- bi lt- betaschooli
-
- for( j in 1 M ) M no. of schools
- betaj dnorm(mu, tau.b)
-
- sigma.y1/sqrt(tau.y)
- log(sigma.y) dflat() or invGamma on s2
- mu dflat() or mu dnorm(0.0,1.0E-6)
- tau.b dflat() or dchisq(2)
-
- data
- list(N, M,Y)
9The School Example, 2 levels
- Yijk ? bj ck ?ijk,
- ?ijk N(0,sy2), bj N(0,sb2), ck N(0,sc2)
- Student i is in school j class k. There is a
random school effect random class effect.
Assuming classes are exchangeable - YN(Xß, sy2I)
10- model
-
- for( i in 1 N ) N number of students
- Yidnorm(mi,tau.y)1/sigma.y2
- mi lt- mubschoolicclassi
-
- for( j in 1 M ) M no. of schools
- bj dnorm(0, tau.b)
-
- for( k in 1 K ) K no. of classes
- cj dnorm(0, tau.c)
-
- sigma.y1/sqrt(tau.y)
- log(sigma.y) dflat() or Gamma on tau.y
- mu dflat() or mu dnorm(0.0,1.0E-6)
- tau.b dflat() or dchisq(2)
- tau.c dflat()
11fixed
random
Same as setting these sß2 to 8
ß0
12Several clusters
13Weight Growth of Rats
14(No Transcript)
15E(Yij ai, ßi) ai ßiXj , i-th rat, j-th
week ai N(a0 , ?a ) ßi N(?0 , ?ß)
Random Effects
a (a1, ,a30), ß(ß1, ,ß30) can be correlated
16Model
can be noninformative
17(No Transcript)
18(No Transcript)
19Gibbs
20- model
-
- likelihood
- for(i in 1N)
- for(j in 1T)
- Yi,j dnorm(mui,tau.y)
- mui,jlt- thetai,1 thetai,2 xj
theta(alpha,beta) -
- super-population
- thetai,12dmnorm(ehta12,
tau.theta12,12) -
- prior
- tau.ydgamma(0.001,0.001) or log(1/tau.y)dflat(
) - hyper-priors
- for (k in 12) ehtakdflat() or another
dmnorm() - R21,12 lt- c(10000, 5000)
- R22,12 lt- c(5000, 10000)
- tau.theta12,12 dwish(R212, 12,2)
21HLM
22General Case
likelihood
super-popn
hyperprior
23One Big Linear Regression