Title: Bolometric%20Adding%20Interferometry:%20MBI%20
1Bolometric Adding InterferometryMBI QUBIC
Peter Timbie University of
Wisconsin - Madison
2CMB Interferometers
??(GHz) FOV ants receivers
DASI 30 5o 13 HEMT
CBI 30 44 13 HEMT
MINT 150 30 4 SIS
VSA 30 7o 14 HEMT
BIMA 30 6 6 HEMT
OVRO 30 4 9 HEMT
T-W 45 5o 2 SIS
BAM 90-270 42 2 Bolo
VLA 5, 8, 16 7 27 HEMT
SZA 30, 90 10, 3 8 HEMT
3Why CMB Interferometry? Systematics!
- simple optics
- - beams can be formed with corrugated horn
arrays - symmetric beam patterns, low sidelobes, no
mirrors - - no off-axis aberrations
- correlates Ex and Ey on a single detector to
measure Stokes U (no differencing of
detectors) - differences sky signals (measures visibilities)
without scanning - simple observing strategy - measure U and Q on
each field by rotating about optical axis - measures Temp and Polarization power spectra
directly - angular resolution 2X better than imager of
equivalent diameter - coherent (HEMTs) or incoherent (bolometers)
systems possible
4Interferometer Beam Systematics
Interferometers measure visibilities
n1
n2
y
j
uij
i
x
X
Beam mismatch, distortion, etc. do not couple T
into Stokes U visibility. E.F. Bunn PRD 75,
083517 (2007)
5Beam Combination for Large N
- Pairwise (Michelson) signals are split and
combined pairwise - N(N-1)/2 pairs (78 for N 13, 4950 for N 100)
- multiplying correlator (coherent receivers
only) a. analog (DASI/CBI) b. digital
(most radio interferometers)
- power? - bandwidth? - Fizeau (Butler) signals from all antennas
appear at all detectors - Guided-wave adding interferometer (Butler
combiner, Rotman lens) - Quasioptical adding interferometer using a
telescope (MBI, EPIC-I, QUBIC)
6Ryles Adding Interferometer (1952)
visibility
7Adding Interferometerfor Many Horns
N horns
OMTs
2N phase modulators
beam combiner
detectors
single-horn auto-correlation
Stokes U visibilities
Stokes I visibilities
total power
8Quasioptical Beam Combiner
Cryostat
Feed horn antennas
Phase Shifters
45 CW twist rectangular wave guide
45º CCW twist rectangular wave guide
Bolometer Array
Parabolic mirror
9Interference pattern
- The interference pattern is imaged on the
bolometer array
- Each pixel measures a linear combination of all
visibilities with different phase shifts
- Sequences of phase shift modulations allow
reconstruction of all visibilities in optimal way - In a close-packed array, many baselines are
redundant - these need to be co-added
Charlassier et al., arxiv0806.0380, AA 497
(2009) 963
Hyland et al., arXiv 0808.2403v1, MNRAS 393
(2009) 531
10 Sensitivity - comparison to imager
- Both systems have
- 256 horns
- 1? angular resolution
- background-limited bolos
- 25 bandwidth
- Interferometer
- co-adds redundant visibilities
- has 1000 detectors
data pts from simulation
Hamilton et al., arxiv0807.0438, AA 491-3
(2008) 923-927 updated with bandwidth and
accurate NET calculations
11The Millimeter-Wave Bolometric Interferometer
(MBI-4)
- Fizeau (optical) beam combiner
- 4 feedhorns (6 baselines)
- 90 GHz (3 mm)
- 1o angular resolution
- 7o FOV
Antennas
Phase modulators
Liquid nitrogen tank
Liquid helium tank
Secondary mirror
3He refrigerator
Primary mirror
Bolometer unit
12MBI Assembly
15 cm
19 spider-web bolos (JPL) (PSBs not required)
13MBI Team
Brown University Greg Tucker, Andrei Korotkov Jaiseung Kim
University of Richmond Ted Bunn
University of Manchester Lucio Piccirillo
Cardiff University Peter Ade, Carolina Calderon
National University of Ireland - Maynooth Creidhe OSullivan, Gareth Curran
University of Wisconsin - Madison Peter Timbie, Amanda Gault Peter Hyland, Siddharth Malu
University of Illinois Ben Wandelt
UC San Diego Evan Bierman, Brian Keating
University of Paris - APC Romain Charlassier, Jean-Christophe Hamilton, Michel Piat
14MBI-4 at Pine Bluff ObservatoryMadison, WI
- First light March 2008
- Beam maps March 2009
- See poster by Amanda Gault
15MBI-4 interference fringes
Observed Signal (Bolometer 9)
Simulated Signal
- Baseline formed by horns 2 and 3
- Observed Gunn oscillator on tower
16MBI Interference Fringes
17The QUBIC collaboration
University of Wisconsin USA
A merging of MBI (USA) with BRAIN (Europe)
IAS Orsay France
CSNSM Orsay France
University of Richmond USA
Maynooth University Ireland
APC Paris France
Brown University USA
Universita di Milano-Bicocca Italia
IUCAA, Pune India
La Sapienza, Roma, Italia
Manchester University UK
CESR Toulouse France
QU Bolometric Interferometer for Cosmology
Google Maps
18The QUBIC instrument concept
- Off-axis quasi-optical beam combiner
Sky
25 cm
4K
4K
4K
back horns
4K
60 cm
40 cm
4K
10 cm
Cryostat
300 mK
70 cm
19QUBIC Design
- 6 modules of 144 entry horns
- 14 deg. primary beams
- square compact configuration
- multipole range 25-150
- 900 TES bolometers / module
- 10000 baselines / module
- phase switch redundant baselines simultaneously
- - phase steps of 15 degrees
- - sequence length 500 steps
-
- 3 channels 90,150,220 GHz
- 25 Bandwidth
-
- Modular Cryogenics
- One 4K pulse tube for 6 modules
- 100 mK focal plane
- r 0.01 in one year of data
25cm
20QUBIC program
- MBI-4 Prototype
- 4 horns bolometric interferometer
- works in Wisconsin (2008 and 2009)
- Fringes observed !
- BRAIN Pathfinder
- Site testing, logistics
- Atmosphere characterization at Dome C
- (effective temperature, polarization ...)
- 2 campaigns, January 2006 and 2007
- Third campaign starting next Antarctic summer
- QUBIC
- Search for primordial B-modes (50 lt l lt 150)
- 6 Bolometric interferometer modules
- 144 horns/module (90, 150, 220 GHz)
- 25 Bandwidth
- Full instrument in 2012-2013
2006
BRAIN Pathfinder
MBI-4
2007
2008
2009
2010
QUBIC first module
2011
QUBIC
2012
21Next steps for Bolometric Interferometry
- phase modulators are critical
- multiple phase states ( 5 bits)
- 1 ms switching speed
- several technologies under study Faraday, MEMs,
s/c nanobridge switches, varactor diode - simulations of systematic effects, scan
strategies - foreground removal in visibility space
- QUBIC
- see poster by T.K. Sridharan for alternate BI
approach