Title: S C O T T
1P R A T
H Y R O D Y N A M I C S
E X T E N D I N G
S C O T T
P U ZZ L E
M I C H I G A N
A N D
U N I V R S I T Y
T H
B T
S T T E
2OUTLINE
- Remnants of the HBT Puzzle
- Extending Hydrodynamics
- Tsunamis
3HBT Basics
4Blast-Wave Models
R
vzz/?
VxV?(r/R)
Parameters T, R, V? , ?, ??
Schnedermann, Sollfrank and Heinz Tomasik,
Broniowski, Lisa and Retiere,
5NA49 vs. Therminator
3-dimensional details of blast-wave confirmed
6Blast-Wave and the HBT Puzzle
- Parameters
- T ? 110 MeV
- R ? 13 fm
- V? ? 0.7c
- ? 10 fm/c
- ?? ? 3 fm/c
Requires Kp spectra
Rapid expansionsudden disintegration
Similar Conclusions Blast Waves (Lisa-Retiere,
Tomasik) Therminator Buda-Lund
7HYDRO
Overall sizes depend on EoS breakup criteria
8Cascade/Boltzmann
More resonances -gt softer -gt bigger Strings -gt
softer -gt bigger
9HBT and the EoS Dynamical Signature
Leads to Rout/Rside gtgt 1
10HBT and EoS Entropy
11HBT and EoSEntropy
12Is Lattice Eq. of State excluded?
Subrata Pal and S.P., PLB 2004
13Total Entropy and the lattice EOS
- Final S consistent with lattice EOS (Crude)
- Entropy moved from pions to baryons
14The HBT puzzle
- Rside/Rout?1 and ???10 fm/c suggest rapid
expansion -gt hard EoS - Entropy suggests softer EoS
15Explanations to the HBT Puzzle
- Refraction (Cramer-Miller, 2005)- Requires
extreme assumptions - Surface Emission (Heiselberg, 2002)- What
happened to energy in center? - Initial transverse velocity (Sinyukov, 2007)-
Cause ??? - Super-Cooling (CsorgoCsernai, hep-th/9312230)
Needed Explanation with consistent dynamical
model
16Extending Hydrodynamics
- Longitudinal Acceleration
- Later times (Chemistry)
- Earlier times (Shear)
- In between (Hadronization dynamics)
17No Longitudinal Acceleration
Bjorken
18Analytic 1-D Solution(S.P. PRC 2007)
Bjorken
Accelerationless models underestimate lifetime
by ?10
19Later Times(Non-Equilibrium Chemistry Below Tc)
- Too many particles
- Pion, kaon, baryon fugacities gt 1
- Smaller P/?
- Less collective energy, more thermal
20Early Times (Shear)
In rest frame
Always true
Perfect Hydro Viscous Hydro
21Navier-Stokes
Bulk
Shear
- at early times
- Boosts early acceleration (D.Teaney,)
- Increases collective energy vs. thermal energy
22Early times
- For ?s/4?, Tzz becomes negative for ??0.6 fm/c
- Eq.s of Motions for Tij
- Saturate Anisotropy
saturatesanisotropy
relaxation time (Israel-Stewart)
23Anisotropy at early times
Collisionless Boltzmann
Classical Longitudinal Fields
CGC (Krasnitz, Nara Venugopalan)
24Intermediate Times(Bulk Viscosity in Mixed
Region)
K.Paech and S.P., PRC 2006
P
e
25Sigma Field out of Equilibrium
Langevin "force"
?? can blow up at phase transition!
26Example Linear Sigma Model
K.Paech A.Dumitru, PLB 623, 200 (2005)
1st order when ggt3.55
27Example Linear Sigma Model
For g3.4, Txx -gt 0
For big effects Should solve Sigma Eq.s of
Motion
K.Paech A.Dumitru, PLB 623, 200 (2005)
28How might this affect dynamics?
29Tsunamis at RHIC
See also nuclear doughnuts(Bauer and Bertsch,
PRL '90)
30Modeling Tsunamis at RHIC with Hydrodynamics
P
Resonance Gas
L
e
H
e
Increasing L or decreasing c2mixed -gt stronger
tsunami
31HydrodynamicEvolutionL2 GeV/fm3,c2mixed0.05
?1,3,5,7,9,11 fm/c
32Changing EoS
Large Rsidefor L?2 GeV/fm3
Bulk Viscosity in mixed phase strengthenstsunami
33Summary Slide 1
34Summary 2
- HBT is only hope to disentagle
- EoS
- Early-Time Shear
- Bulk Viscosity near Tc