S C O T T - PowerPoint PPT Presentation

1 / 34
About This Presentation
Title:

S C O T T

Description:

Saturate Anisotropy. saturates. anisotropy. relaxation time ... Anisotropy at early times. Classical Longitudinal Fields: CGC (Krasnitz, Nara &Venugopalan) ... – PowerPoint PPT presentation

Number of Views:21
Avg rating:3.0/5.0
Slides: 35
Provided by: scott605
Category:
Tags: anisotropy

less

Transcript and Presenter's Notes

Title: S C O T T


1
P R A T
H Y R O D Y N A M I C S
E X T E N D I N G
S C O T T
P U ZZ L E
M I C H I G A N
A N D
U N I V R S I T Y
T H
B T
S T T E
2
OUTLINE
  • Remnants of the HBT Puzzle
  • Extending Hydrodynamics
  • Tsunamis

3
HBT Basics
4
Blast-Wave Models
R
vzz/?
VxV?(r/R)
Parameters T, R, V? , ?, ??
Schnedermann, Sollfrank and Heinz Tomasik,
Broniowski, Lisa and Retiere,
5
NA49 vs. Therminator
3-dimensional details of blast-wave confirmed
6
Blast-Wave and the HBT Puzzle
  • Parameters
  • T ? 110 MeV
  • R ? 13 fm
  • V? ? 0.7c
  • ? 10 fm/c
  • ?? ? 3 fm/c

Requires Kp spectra
Rapid expansionsudden disintegration
Similar Conclusions Blast Waves (Lisa-Retiere,
Tomasik) Therminator Buda-Lund
7
HYDRO
Overall sizes depend on EoS breakup criteria
8
Cascade/Boltzmann
More resonances -gt softer -gt bigger Strings -gt
softer -gt bigger
9
HBT and the EoS Dynamical Signature
Leads to Rout/Rside gtgt 1
10
HBT and EoS Entropy
11
HBT and EoSEntropy
12
Is Lattice Eq. of State excluded?
Subrata Pal and S.P., PLB 2004
13
Total Entropy and the lattice EOS
  • Final S consistent with lattice EOS (Crude)
  • Entropy moved from pions to baryons

14
The HBT puzzle
  • Rside/Rout?1 and ???10 fm/c suggest rapid
    expansion -gt hard EoS
  • Entropy suggests softer EoS

15
Explanations to the HBT Puzzle
  • Refraction (Cramer-Miller, 2005)- Requires
    extreme assumptions
  • Surface Emission (Heiselberg, 2002)- What
    happened to energy in center?
  • Initial transverse velocity (Sinyukov, 2007)-
    Cause ???
  • Super-Cooling (CsorgoCsernai, hep-th/9312230)

Needed Explanation with consistent dynamical
model
16
Extending Hydrodynamics
  1. Longitudinal Acceleration
  2. Later times (Chemistry)
  3. Earlier times (Shear)
  4. In between (Hadronization dynamics)

17
No Longitudinal Acceleration
Bjorken
18
Analytic 1-D Solution(S.P. PRC 2007)
Bjorken
Accelerationless models underestimate lifetime
by ?10
19
Later Times(Non-Equilibrium Chemistry Below Tc)
  • Too many particles
  • Pion, kaon, baryon fugacities gt 1
  • Smaller P/?
  • Less collective energy, more thermal

20
Early Times (Shear)
In rest frame
Always true
Perfect Hydro Viscous Hydro
21
Navier-Stokes
Bulk
Shear
  • at early times
  • Boosts early acceleration (D.Teaney,)
  • Increases collective energy vs. thermal energy

22
Early times
  • For ?s/4?, Tzz becomes negative for ??0.6 fm/c
  • Eq.s of Motions for Tij
  • Saturate Anisotropy

saturatesanisotropy
relaxation time (Israel-Stewart)
23
Anisotropy at early times
Collisionless Boltzmann
Classical Longitudinal Fields
CGC (Krasnitz, Nara Venugopalan)
24
Intermediate Times(Bulk Viscosity in Mixed
Region)
K.Paech and S.P., PRC 2006
P
e
25
Sigma Field out of Equilibrium
Langevin "force"
?? can blow up at phase transition!
26
Example Linear Sigma Model
K.Paech A.Dumitru, PLB 623, 200 (2005)
1st order when ggt3.55
27
Example Linear Sigma Model
For g3.4, Txx -gt 0
For big effects Should solve Sigma Eq.s of
Motion
K.Paech A.Dumitru, PLB 623, 200 (2005)
28
How might this affect dynamics?
29
Tsunamis at RHIC
See also nuclear doughnuts(Bauer and Bertsch,
PRL '90)
30
Modeling Tsunamis at RHIC with Hydrodynamics
P
Resonance Gas
L
e
H
e
Increasing L or decreasing c2mixed -gt stronger
tsunami
31
HydrodynamicEvolutionL2 GeV/fm3,c2mixed0.05
?1,3,5,7,9,11 fm/c
32
Changing EoS
Large Rsidefor L?2 GeV/fm3
Bulk Viscosity in mixed phase strengthenstsunami
33
Summary Slide 1
34
Summary 2
  • HBT is only hope to disentagle
  • EoS
  • Early-Time Shear
  • Bulk Viscosity near Tc
Write a Comment
User Comments (0)
About PowerShow.com