Statistical Analysis of Probabilistic Systems - PowerPoint PPT Presentation

1 / 19
About This Presentation
Title:

Statistical Analysis of Probabilistic Systems

Description:

Not restricted to finitary probabilistic rewrite theories. ... crl [tick] : clock(N,C) = if B then clock(N 1,C - (C / R0)) else broken(N, C - (C / R0)) fi ... – PowerPoint PPT presentation

Number of Views:26
Avg rating:3.0/5.0
Slides: 20
Provided by: ksen4
Category:

less

Transcript and Presenter's Notes

Title: Statistical Analysis of Probabilistic Systems


1
Statistical Analysis of Probabilistic Systems
  • Koushik Sen
  • University of Illinois at
  • Urbana-Champaign, USA

Joint work with Gul Agha, Nirman Kumar, José
Meseguer and Mahesh Viswanathan
2
Motivation
  • Network protocols
  • Delays in communication
  • Failures in communication
  • Malicious participants
  • Large and Geographically Distributed Systems
  • Interact with unpredictable and hostile
    environment
  • Failure of a component
  • Probabilistic in Nature

3
Probabilistic Model
  • Stochastic Modeling
  • Associate probability with different
    uncertainties
  • Probability distribution for time (delay)
  • Probabilities for failures
  • Formal Probabilistic Models
  • Discrete-Time Markov Chains (DTMC)
  • Continuous-Time Markov Chains (CTMC)
  • Markov Decision Processes (MDP)
  • Generalized Semi-Markov Processes (GSMP)
  • Probabilistic Rewrite Theories (PRwTh) FMOODS03

4
PMaude
  • Specifications in Probabilistic Rewrite Theories
  • Not restricted to finitary probabilistic rewrite
    theories.
  • Execute Specifications to get sample traces
  • Non-determinism is resolved by Maude in fair way.
  • Probabilistic choices are made by sampling.
  • Library for Sampling

5
Clock Example
  • sort Clock .
  • op clock Nat Float -gt Clock ctor .
  • op broken Nat Float -gt Clock ctor .
  • op sample Float -gt Bool .
  • crl tick clock(N,C) gt if B then clock(N
    1,C - (C / R0))
  • else broken(N, C - (C / R0)) fi
  • if B sample(C) .
  • eq sample(C) if C gt R0 then true
  • else sampleBerWithP(C / R0)
  • fi .

6
Sample Runs
  • Maudegt rew clock(0,1000.0) .
  • result Clock broken(227, 7.5188020199780931e2)
  • Maudegt rew clock(0,1000.0) .
  • result Clock broken(237, 7.4253439021252518e2)
  • Maudegt rew clock(0,1000.0) .
  • result Clock broken(195, 7.8258459583034676e2)
  • Maudegt rew clock(0,1000.0) .
  • result Clock broken(206, 7.7189105943066818e2)
  • Maudegt rew clock(0,1000.0) .
  • result Clock broken(200, 7.7770565471541227e2)
  • Maudegt rew clock(0,1000.0) .
  • result Clock broken(214, 7.6420583477641014e2)
  • Maudegt

7
Sampling Library
  • op sampleBerWithP Float -gt Bool .
  • op sampleExpWithMean Float -gt Float .
  • op sampleExpWithRate Float -gt Float .
  • op sampleNormal Float Float -gt Float .
  • op sampleT Float -gt Float .
  • op sampleChi Float -gt Float .
  • op sampleF Float Float -gt Float .

8
Dynamic Analysis
  • Simulate system or Observe the system execution
  • Collect traces
  • Analysis Techniques
  • Statistical Analysis of Performance and
    Reliability properties (VeStA) CAV04 QEST04
    submitted
  • Construct Predicate Abstraction using Machine
    Learning
  • Model-check to find counter-example FSE04
    submitted
  • Construct Reachable Region as a recognizable
    language
  • Regular Model Checking, Widening, Acceleration,
    Lever
  • Runtime Verification (Eagle) VMCAI04,PADTAD04
    Space Rover at NASA Ames
  • Predictive Analysis (JMPaX) FSE03, TACAS04,
    PADTAD04
  • Distributive Analysis (DiAna) ICSE04 WODA04

9
Probabilistic Analysis
  • Specify performance and reliability properties in
    some probabilistic logic
  • Probabilistic Computation Tree Logic (PCTL)
  • Continuous Stochastic Logic (CSL)
  • Model-Check against the property
  • Numerical (PRISM, ETMCC)
  • Accurate, Computationally intensive
  • Statistical (ProVer, SMART, VeStA )
  • Approximate, Scalable

10
Continuous Stochastic Logic (CSL)
  • Computation Tree Logic (CTL) extended with
    continuous time and probabilities
  • Plt 0.5(lt10 full)
  • Probability that queue becomes full in 10 units
    of time is less than 0.5
  • Pgt0.98( retransmit Ult200 receive)
  • Probability that a message is received
    successfully within 200 time units without any
    need for retransmission is greater than 0.98

11
Statistical Approach - Blackbox
12
VeStA
  • Get sample traces with labels
  • L(s0) a0-gt L(s1) a1-gt -an-1-gt L(sn)
  • Learn model
  • Edge-labeled Continuous Time Markov Chain
  • New Machine Learning
  • Statistically verify learned model
  • Hypothesis Testing

13
Simple Approach
  • Traces with complete state information
  • s0 a0-gt s1 a1-gt -an-1-gt sn
  • s0 a0-gt s1 a1-gt -am-1-gt sm
  • Easy to infer probabilistic model
  • Black-box systems
  • Traces with no complete state information
  • L(s0) a0-gt L(s1) a1-gt -an-1-gt L(sn)
  • Infer model through learning

14
Machine Learning Algorithm
Learn bisimulation relation over States
15
Details of ML algorithm
  • Define bisimulation of states
  • s s
  • L(s) L(s)
  • 8 a 9 a ?(a) ?(a) and ?(s,a) ?(s,a)
  • Vice-versa
  • Cannot test bisimulation exactly
  • Approximate bisimulation test
  • Statistical tests
  • Hoeffdingd bound to test Bernoulli Distribution
  • F-distribution to test Exponential Distribution
  • In the limit the algorithm learns the exact model.

16
Verification Idea
  • To verify a formula P p? set up two statistical
    hypothesis tests
  • Test 1
  • H0 ( of true)/( of samples) p - ?1 say
    YES and calculate p-value
  • H1 ( of true)/( of samples) gt p - ?1
  • Test 2
  • H0 ( of true)/( of samples) p ?2 say
    NO and calculate p-value
  • H1 ( of true)/( of samples) lt p ?2
  • If p - ?1 lt ( of true)/( of samples) lt p ?2
  • say I dont know

17
On Nested Formulas
  • Evaluate Satisfaction of nested Probabilistic
    formulas
  • Yes
  • No
  • I dont know
  • Resolve in adversial fashion
  • Yes when verifying a formula of the form P p?
  • No when verifying a formula of the form P p?

18
Evaluation
  • Tandem Queuing Network
  • Cyclic Polling System
  • Grid World Example
  • Answers matched the numerical model-checker
  • P-value (?) of the order 10-8
  • Very high confidence in our result
  • 4-times faster than ProVer and PRISM
  • Disadvantage Space requirement is high
  • Required to store all samples before
    model-checking

19
Discussion
  • No need for Model
  • Black-box Checking
  • Can we do better if we have the model?
  • Use PMaude specifications
  • Use Machine Learning to verify Liveness properties
Write a Comment
User Comments (0)
About PowerShow.com