Cosmic Conclusions - PowerPoint PPT Presentation

1 / 11
About This Presentation
Title:

Cosmic Conclusions

Description:

What does that number mean for a given detector size and live-time? Are ... Yellow curve is Horizontal and Teal curve is Vertical N( E)*x(p), where x(p) is ... – PowerPoint PPT presentation

Number of Views:14
Avg rating:3.0/5.0
Slides: 12
Provided by: davidg65
Category:

less

Transcript and Presenter's Notes

Title: Cosmic Conclusions


1
Cosmic Conclusions
David Gerstle LArTPC Yale University
Undergraduate  
2
Outline
  • How do we get a particles/m2/s number?
  • Detector location information
  • J(gtE) (m2 s sr)-1
  • Angular distribution
  • Math
  • The numbers
  • What does that number mean for a given detector
    size and live-time?
  • Are these numbers accurate?
  • How does the muon flux and track length affect
    us?
  • Conclusions and further questions

3
Effect of Detector Location
  • The two values associated with a location which
    most affect the flux are the atmospheric depth
    (g/cm2) and geomagnetic cutoff (GV).
  • Greater the atmospheric depth, lower the flux.
    The depth is intimately related to the altitude.
  • Greater the geomagnetic cutoff value, lower the
    flux. GCV is the least value of kinetic energy
    divided by charge a primary cosmic ray must have
    to get through the Earths magnetic field. It is
    closely related to latitude (for the geomagnetic
    field varies with latitude).
  • Soudan 990 g/cm2 at 400m altitude 1.0 GV at
    47N.

4
Need a J(E) (m2 s sr)-1 and Angular
Distribution
  • J(E) is the vertical flux of particles above an
    energy E.
  • What value of E should we use?
  • 0.3 GeV/c muons travel 1m in LAr.
  • As this 1m is (probably) the shielding LAr we
    will end up having, 0.3 GeV/c (0.2 GeV KE) is a
    good value for E.
  • 0.5 GeV is the lower limit of photon events of
    interest for a detector which is in a beam I
    used this value for photons.
  • Generally accepted to be cosn?
  • J(E)cosn?, admittedly, is a poor model for the
    shape of J(E,?).
  • However, the area (with respect to d?) under
    J(E)cosn? is very close to the area under
    J(E,?), so I have used J(E)cosn?.
  • Even though they have different shapes,
    J(E)cosn? is a fine approximation for how we are
    using it.

5
Math
J(E)
  • Horizontal Surface
  • Vertical Surface

Formula used in spreadsheet
6
Numbers I Use
      n
muon J(gt0.3 GeV/c) (m2 s sr)-1 8.87E01 2.16
muon Kranshaar (1949) 53N, 1.6 GV, 259m Kranshaar (1949) 53N, 1.6 GV, 259m Crooks Rastin (1972) 53N, gt0.35 GeV/c
photon J(gt0.5 GeV) (m2 s sr)-1 9.02E-01 3
photon Pugacheva et al., (1973) and Palmatier (1952) Pugacheva et al., (1973) and Palmatier (1952) Kameda (1960), Beuermann and Wibberenz (1968)
Photon values are adjusted from photon data
Note a factor of 100 between muon and photon
flux FOR THESE values of E
  • Recall Soudan 990 g/cm2 at 400m altitude
    1.0 GV at 47N.
  • All citations were found within Grieder, P.K.F.
    Cosmic Rays at Earth. Amsterdam Elsevier
    Science, 2001. A spectacular book.

7
Results for gt0.3 GeV/c muons and gt0.5 GeV photons
Time bin (s) Diameter (m) Height (m)
2.00E-03 35 35
  Horizontal (m2 s)-1 Horizontal s-1 Vertical (m2 s)-1 Vertical s-1 TOTAL s-1 TOTAL
muon 1.34E02 1.29E05 3.25E01 1.25E05 2.54E05 5.08E02
photon 1.13E00 1.09E03 2.40E-01 9.24E02 2.01E03 4.03E00
  • Recall that Horizontal means through a
    horizontal surface and similarly for Vertical.
  • Note that as photon energy increases, the flux
    rapidly decreases using a smaller value of E in
    J(gtE) will significantly increase the total
    photon flux.

8
Are these Muon Numbers Accurate?
  • PDG quotes a muon integral flux through a
    horizontal surface as being 1 (cm2 min)-1
    170 (m2 s)-1
  • I calculated 130 (m2 s)-1 for Egt0.3 GeV/c.
  • The difference is accounted for by recognizing
    PDG to have used Emin effectively 0 in J(gtE).

Linear Scale
0.3 Gev/c
9
Are these Photon Results Accurate?
  • It is key that we know what E value to use
    because the curve is so steep.

dN/dE
J(gtE)
10
How does the muon flux affect us?
  • Yellow curve is Horizontal and Teal curve is
    Vertical N(gtE)x(p), where x(p) is the path
    length of a muon in LAr (from a dE/dx
    calculation).
  • Nhor(gt0.3 GeV/c)x(gtp) 1800 particle meters per
    meter2 per second.
  • Nvert(gt0.3 GeV/c)x(gtp) 450 particle meters per
    meter2 per second.
  • 35m by 35m cylindrical detector and 2 millisecond
    drift-time yields 7000 particle meters during
    each live-time.

11
Conclusions and further Questions
  • All calculations were done in Excel the file is
    in the LArTPC DocDB 160 CosmicConclusions.xls
  • We might consider buying a copy of Mr. Grieders
    250 book.
  • Need to determine the effect of these numbers on
    the data acquisition system.
  • These data are with respect to a Soudan, MN
    detectorshould we consider another surface
    location?
  • Lower latitude and altitude would reduce flux.
  • Is there reason to use a different value for E in
    J(gtE) for muons and/or photons?
  • Do we need to accurately model the shape of
    J(E,?)?
  • Can we mathematically model the effect of the
    geomagnetic cutoff? Do we need to?
Write a Comment
User Comments (0)
About PowerShow.com