Title: THEOREMAOMEGAULTRA
1COMPUTER-BASED MATHEMATICS
Mathematische Assistenzsysteme
Jörg Siekmann
http//www.dfki.de/siekmann
- Universität des Saarlandes
- und
- Deutsches Forschungszentrum
- für Künstliche Intelligenz GmbH
- DFKI
2Was ist ein mathematisches Assistenzsystem?
- Textverarbeitung a la LATEX TeXmacs
- Information Retrieval aus einer mathematischen
Datenbank ( MBase, Open Math, OmDoc,... ) - Theorie Kontext
- Semantik der Definitionen, Theoreme, Beweise und
Lemmata . . . und partiell der
Textfragmente! - Hilfsmittel und Tools Computer-Algebra Systeme
- Hilsmittel und Tools Beweis Systeme
- Hilfsmittel und Tools Proofchecker
http//www.activemath.org
3..... to set the stage.
1954
Martin Davis
Theorem The Sum of two even numbers is again
even Proof (Presburger Arithmetic)
1956
Alan Newell, Herb Simon
Theorems from Principia Mathematica Proof
Logic Theorist
43 Paradigms
1. Classical Automated Theorem Proving
- Resolution
- Tableaux-Methods
- Matrix and Connection Method
2. Tactical Theorem Proving
- Automath
- NUPRL
- IMPS
- ISABELLE etc.
3. Human oriented Theorem Proving
- Natural Deduction
- Woody Bledsoe
- Proof Planing OYSTER-CLAM, OMEGA
5Deduction Systems
6Automated theorem proving is not the beautiful
process we know asmathematics. This is cover
your eyes with blinders and hunt through a
cornfield for a diamond-shaped grain of corn
... Mathematicians have given us a great deal of
direction over the last two or three millennia.
Let us pay attention to it.
Woody Bledsoe, 1986
7Can we do better
?
8Knowledge based Proof Planning
AI-PLANNING IN THE BLOCKS WORLD
on(A,B), on(B,C), on_table(C), on_table(D),
free(A), ...
on_table(B)
9Methods in Proof Planning
Declarations
Premises
Specification
Declarative Part
Constraints
Conclusions
Declarative Content
Tactic
Procedural Part
Procedural Content
Alan Bundy (1989) A Science Of Reasoning
10Methods An Example
11Knowledge based Proof Planning
Method 1
Method 2
Method 3
- Classical Proof Planning
- Knowledge based Proof Planning
12Mathematical Control Knowledge
Global mathematical control
- Prove a lt b directly or via auxiliary
variabels ? prove a lt b by Solveltb, Solve or
... LimHeuristic.
- Use important parts of assumptions to
introduce auxiliary variabels/inequalities e.g.
LimHeuristic requires
- Focus
- UNWRAPHYP
- REmoveFocus
- MP-b
Source Erica Melis
13Control knowledge represented as rules
(control-rule attack-inequality (IF
(goal-matches (?goal (?x lt ?y)))) (THEN
(prefer((Solvelt ?goal) (Solve
?goal) (ComplexEstimate ?goal)
(Simplify ?goal))))
(control-rule case-analysis-intro (IF
(last-method (Rewrite (?C -gt ?R))) AND
(failure-condition (trivial ?C)))
(THEN (select (CaseSplit (?C or not ?C)))))
Source Erica Melis
14Peter Deussen Semigroups and Automata,
Springer Verlag, 1971
Theorem 4.8 Let s and t be two equivalence
relations. Then (s ? t) t is also an
equivalence relation.
Proof (Idea)
To be shown
- Symmetry
- Reflexivity
- Transitivity
of (s ? t) t
15More Examples epsilon-delta Proofs
Woody Bledsoe Challenges
16Method for Limit Theorems
Source Erica Melis
17Construction of mathematical Objects
CONSTRAINT SOLVING
Collecting constraints and check for consitency
Final constraint store for LIM
Source Erica Melis
18Proof Presentation to the User
Verbalisation of
Source Erica Melis
19PDS Representation of (partial) Proofs
20OMEGA -ANTS Combining ATP with Proof Planning
- concurrency and ressource
adaptive behaviour - anytime algorithms
- flexible integration of
- natural deduction
- tactics and methods
- external systems
Chris Benzmüller, Volker Sorge
21The OMEGA SYSTEM
22Proof Planning A Screen Shot
23Zwei Entwicklungsrichtungen
- Verifikationswerkzeuge z.B. VSE am DFKI
- 2. Mathematische Tutorsysteme
- z.B. ActiveMath
am DFKI - __________________________________________________
___ - anwendungsorientierte
- Grundlagenforschung
!
CHALLENGE Ein integriertes mathematisches
Assistenzsystem
24 Knowledge Representation for Mathematics
- XML-Representation
- Semantics (OpenMath) extended by meta data (publ,
mathematical, and pedagogical)
- Formal content for
- Calling external systems
- Intelligent search functionalities
Mathematical Ontology
25Knowledge the building blocks in OMDoc
ltdefinition id"c6s1p4_Th2_def_monoid"
for"c6s1p4_monoid"gt ltmetadatagt
ltdepends-ongt ltref theory"cp1_Th3"
name"structure" /gt lt/depends-ongt ltTitle
xmllang"en"gtDefinition of a monoidlt/Titlegt
lt/metadatagt ltCMP xmllang"en" format"omtext"gt
A monoid is a ltref xref"cp1_Th3_def_structure"gt
structure lt/refgt ltOMOBJgt ltOMS cd"elementary"
name"ordered-triple"/gt ltOMV name"M"/gt
ltOMS cd"cp4_Th2" name"times"/gt ltOMS
cd"cp4_Th2" name"unit"/gt lt/OMOBJgt in
which ltOMOBJgt ltOMS cd"elementary"
name"ordered-pair"/gt ltOMV name"M"/gt ltOMS
cd"cp4_Th2" name"times"/gt lt/OMOBJgt is a
semi-group with ltref xref"c6s1p3_Th2_def_unit"gtun
itlt/refgt ltOMOBJ xmlns"http//www.openmath.or
g/OpenMath"gt ltOMS cd"cp4_Th2"
name"unit"/gt lt/OMOBJgt. lt/CMPgt ltFMPgtltOMOBJgt
... lt/OMOBJgtlt/FMPgt lt/definitiongt
ltdefinition id"c6s1p4_Th2_def_monoid"
for"c6s1p4_monoid"gt A monoid is a
structure M times
unit in which M times is a
semi-group with unit e lt/definitiongt
ltdefinition id"c6s1p4_Th2_def_monoid"
for"c6s1p4_monoid"gt ltCMP xmllang"en"
format"omtext"gt A monoid is a
structure M times unit in
which M times is a semi-group with
unit e lt/CMPgt ltFMPgtltOMOBJgt ...
lt/OMOBJgtlt/FMPgt lt/definitiongt
ltdefinition id"c6s1p4_Th2_def_monoid"
for"c6s1p4_monoid"gt ltmetadatagt
ltdepends-ongt ltref theory"cp1_Th3"
name"structure" /gt lt/depends-ongt ltTitle
xmllang"en"gtDefinition of a monoidlt/Titlegt
lt/metadatagt ltCMP xmllang"en" format"omtext"gt
A monoid is a
structure M times unit in which M
times is a semi-group with unit e lt/CMPgt ltFMPgt
ltOMOBJgt ... lt/OMOBJgtlt/FMPgt lt/definitiongt
A monoid is a
structure M times unit in which M
times is a semi-group with unit e
An Example A MONOID
26Ein mathematisches Assistenzsystem
27 Computer Supported Mathematics !!
Schickard Die erste mechanische Rechenmaschine
der Welt.
. . . . . . Zuse die erste elektronische
Rechenmaschine.
28(No Transcript)