Title: Real Robots For the Real World AAAI-1992
1Real Robots For the Real WorldAAAI-1992
- Sebastian Thrun
- Carnegie Mellon University
- thrun_at_cs.cmu.edu
2AI Magazine
3(No Transcript)
4(No Transcript)
5Real Robots For the Real WorldAAAI-2004
- Sebastian Thrun
- Stanford AI Lab
- thrun_at_stanford.edu
6Acknowledgements
Mike Montemerlo, Andreas Nuechter team from
Fraunhofer
7(No Transcript)
8(No Transcript)
9(No Transcript)
10Somerset, PA, July 02
11(No Transcript)
12(No Transcript)
13Pennsylvania
Source Bureau of Abandoned Mine Reclamation, PA
14Mine Mapping Systems
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20Groundhog
21(No Transcript)
22(No Transcript)
23NOs
- No communication
- No human access
- No sparks
- No information on hazards
- No breadcrumbs
- No second robot
24Mapping / SLAM
25Simultaneous Localization And Mapping
26Simultaneous Localization And Mapping
27Mr. Metric
28Extended Kalman Filter Smith/Cheeseman 86
29space O(n2) update time O(n2) n map size
30Real-World SLAM ResultsCourtesy of Stefan
Williams and Hugh Durrant-Whyte, Sydneysee also
Smith/Self/Cheeseman, 1986
31- Mr. Metric
- State map robot
- Embedded in Euclidean space
- Posterior p(map, robot)
- Gaussian moments S, m
- Update time O(n2)
- Memory O(n2) with n map size
- O(1,000) features max
32Ms. Topological
33Information Form Algorithms
- Offline
- Lu/Milios 97
- Bosse/Leonard 01
- Online (filter)
- Nettleton/Durrant-Whyte 02
- Thrun/Koller/Ng/Gharamani/Liu/Durrant-Whyte 03
- In-between
- Konolige/Gutmann 03
34Inverse Correlation
35Probability ? Information
36From Probabilities To Information And Back(or
from metric to topological)
37Information Matrix Interpretation
38Theorem
- For a sparse information matrix W, the following
updates consume constant time - Measurement update (addition)
- Motion update (subtraction arc removal)
- Sparsification (arc removal)
- Linearization (amortized)
- But Requires approximation (See our WAFR-02
paper)
39(No Transcript)
40- Mr. Metric
- State map robot
- Embedded in Euclidean space
- Posterior p(map, robot)
- Gaussian moments S, m
- Update time O(n2)
- Memory O(n2) with n map size
- O(1,000) features max
- Ms. Topological
- State maprobot
- Not embedded, all relative
- Posterior -log p(map, robot)
- Information parametrs W,x
- Update time O(1)
- Memory O(n)
- O(100,000,000) features max
- But no inference!!!
Proactive!
Lazy !
41The Truth Out!
Metric Mapping Absolute coordinates p(x) Proacti
ve mapping
Topological Mapping Relative coordinates -log
p(x) Lazy mapping
inference
42Data Association Problem
?
43(No Transcript)
44Mr. Data Association
Proactive!
Brittle !
FastSLAM
Murphy 00, Thrun et al 00, Parr et al 02,
Montemerlo et al 03, Haehnel et al 03
45Mr. Data Association
Proactive!
Brittle !
Murphy 00, Thrun et al 00, Montemerlo et al 02,
Parr et al 02, Haehnel et al 03
46Ms. Data Associations Insights
- Insight 1 Data association problems rare!
- Insight 2 Data association soft constraint
- Insight 3 Lazily expand data association tree
47(No Transcript)
48Ms. Data Association
49Ms. Data Association
-log p 100
-log p 2
-log p 5
-log p 80
-log p 120
-log p 10
-log p 7
-log p 80
-log p 90
-log p 70
50Data Association
- Mr. Proactive
- Particle filter many hypotheses
- Ms. Lazy
- Recursive tree search expand fringe only when
needed
51250 meters
Lazy recursive
Maximum likelihood
52Before Inference
After Inference
800 meters
By Michael Montemerlo
53Proof (Part 1 Measurement Update)
54Proof (Part 2 Motion Update)
55Vehicle Control
56(No Transcript)
57(No Transcript)
58(No Transcript)
59Das Experiment
60(No Transcript)
61(No Transcript)
62(No Transcript)
63Courtesy of Andreas Nuecher, Joachim Hertzberg et
al
64(No Transcript)
65250 meters
Bruceton Research Mine
66(No Transcript)
67(No Transcript)
68(No Transcript)
69Whats Next
702005 DARPA Grand Challenge
71(No Transcript)
72www.stanfordracing.org
73(No Transcript)
74Thank You!
- More information at robots.stanford.edu