Title: Computational Sensing = Modeling Optimization
1Computational Sensing Modeling Optimization
- CENS seminar
- Jan 28, 2005
- Miodrag Potkonjak
- miodrag_at_cs.ucla.edu
Key Contributors Bradley Bennet, Alberto Cerpa,
Jessica Feng, FarinazKoushanfar, Sasa
Slijepcevic, Jennifer L. Wong
2Goals
- Why Modeling?
- Why Non-parametric Statistical Modeling?
- Beyond Non-parametric Statistical Modeling?
- Do We Really Need Models?
- Tricks
- For Fame and Fun
- Applications Calibration
3Why Modeling No OF, No Results
L1 1.272m L2 5.737m L? 8.365m Gaussian
0.928m Stat. Error Model 1.662x10-3m
Location discovery
4Why Modeling What to Optimize?
Packet size
5Why Modeling What to Optimize?
Receiver/Transmitter quality
6Why ModelingLocalized vs. Centralized
Reception rate predictability
7Why Modeling Optimization Mechanism
One unknown node
Two unknown nodes
Atomic localization
8Why Modeling What paradigm to use?
Maximum Likelihood
Distance measurements correlation
9Why Modeling Protocol Design
Lagged autocorrelation
10Why Modeling Executive Summary
- Objective Function and Constraints What to
Optimize? - Consistency - Problem Identification Formulation - Variability
- Localized vs. Centralized - Time variability
- Optimization Mechanism - Topology of Solution
space Monotonicity, Convexity - Optimization Paradigm - Correlations
- Design of Protocols - High Impact Features First
11How to Model?
- Most likely value regression
- Probability of given value of target variable for
predictor variable - Validation
- Evaluation
- Parametric and Non-parametric
- Exploratory and Confirmatory
12Model Construction Samples of Techniques
- Independent of Distance (ID)
- Normalized Distance (ND)
- Kernel Smoothing (KS)
- Recursive Linear Regression (LR)
- Data Partitioning (DP)
13Independent of Distance (ID)
14Normalized Distance (ND)
15Kernel Smoothing (KS)
16Recursive Linear Regression (LR)
17Data Partitioning (DP)
18Statistical Evaluation of Models
19Statistical Evaluation of OFs
20Location DiscoveryExperimental Results
21Location DiscoveryPerformance Comparison
- ROBUST D. Niculescu and B. Nath. Ad Hoc
Positioning System (APS). GLOBECOM. 2001. - N-HOP A. Savvides, C. Han, M.B. Strivastava.
Dynamic Fine-Grained Localization in Ad-Hoc
Networks of Sensors. MOBICOM. pages 166-179.
2001. - APS C. Savarese, K. Langendoen and J. Rabaey.
Robust Positioning Algorithms for Distributed
Ad-Hoc Wireless Sensor Networks. WSNA. pages
112-121. 2002.
- K. Langendoen and N. Reijers. Distributed
Localization in Wireless Sensor Networks A
Quantitative Comparison. Tech. Rep. PDS-2002-003.
Technical University, Delft. 2002.
22Combinatorial Isotonic Regression CIR
- Statistical models using combinatorics
- Hidden covariate problem
- Univariate CIR Problem Formulation
- Given data (xi, yi, ?i), i1,,K
- Given an error measure ?p and x1ltx2ltx3ltltxK
- ?p isotonic regression is set (xi, yi), i1,,K,
s.t. - Objective Function Min ?p(xi, yi, ?i)
- Constraint y1lty2lty3ltltyK
23Univariate CIR Approach
- Histogram ? build error matrix E, eij ?p(xi, yj)
Histogram
Error Matrix
Y
Y
1 2 1 2 5
3 1 4 5 6
2 5 4 9 6
1 6 8 1 2
9 6 3 2 1
46 53 48 34 28
32 37 30 19 18
24 23 20 14 20
20 19 18 27 34
18 27 32 42 52
46
32
24
20
18
20
X
X
24Univariate CIR Approach
- Histogram ? build error matrix E, eij ?p(xi,
yj) - Build the cumulative error matrix CE
Error Matrix
Cumulative Error
Y
Y
46 73 87 91 99
32 57 69 76 89
24 43 59 71 91
20 39 57 84 118
18 49 81 123 175
46
32
24
20
18
46 53 48 34 28
32 37 30 19 18
24 23 20 14 20
20 19 18 27 34
18 27 32 42 52
X
X
25Univariate CIR Approach
- Histogram ? build error matrix E, eij ?p(xi,
yj) - Build the cumulative error matrix CE
- Map the problem to a graph combinatorial!
Cumulative Error
Y
46 73 87 91 99
32 57 69 76 89
24 43 59 71 91
20 39 57 84 118
18 49 81 123 175
X
26Multivariate CIR Approach - ILP
- Given a response variable Y, and two explanatory
X1, X2 ? 3D error matrix E
27CIR Prediction Error on Temperature Sensors at
Intel Berkeley
- Prediction error over all nodes
28Combinatorial Regression Flavors
- Minimal and Maximal Slope
- Number of Segments
- Convexity
- Unimodularity
- Locally Monotonic
- Symmetry
- y f(x), x g(y) ? x g(f(x))
- Transitivity
- y f(x), z g(y), z h(x) ? h(x) g(f(x))
29Combinatorial Regression Symmetry
30Time Dependant Models
31Time Dependant Models
32Do We Really Need Models?
33Modeling Without Modeling Consistency
x1 lt x2 ? f(x1) lt f(x2) x1 gt x2 ? f(x1) gt
f(x2)
34On-line Model Construction
35Statistics for Sensor NetworksExecutive Summary
- Large Scale Time Dependent Modelling
- Hidden Covariates Monotonicity, Convexity, ...
- Go to Discrete and Graph Domains
- Interaction Data Collection - Modeling
- Properties of Networks
- Simulators
36Tricks Modeling and Sensor Fusion
- Hide Nodes
- Split Nodes
- Weight Nodes
- Additional Dimensions
- Additional Sources
37Hiding Beacons
38Splitting Nodes
39Modeling Networks for Fame Fun
40Perfect Neighbors
41Applications
- Calibration
- Location Discovery
- Data Integrity
- Sensor Network Compression
- Sensor Network Management
- Low Power Wireless Ad-hoc Network Lossy Links
42Calibration
- Minimal Maximal Error
- Minimal Average Error median
- Minimal L2 Error average
- Most Likely Value
PDF
Error
L?
ML
43Calibration Model for Light
44Interval of Confidence
45Summary Recipe for SN Research
- Collect Data
- Model Data
- Understand Data
- ...