L - PowerPoint PPT Presentation

About This Presentation
Title:

L

Description:

Grey College, Durham, UK, December 18-19, 2005. Sergio ... D. Dassie et al., Nucl. Phys. A678:341, 2000. D. I. Britton et al., Phys. Rev. D49:28, 1994 ... – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 32
Provided by: sergi111
Category:
Tags: dassie

less

Transcript and Presenter's Notes

Title: L


1
L
Resolving the
SND explained by
terile
S
D
N
eutrino
Anomaly
ecay
Nu-Mass Meeting Grey College, Durham, UK,
December 18-19, 2005
2
  • THE FACTS

3
Non Standard results
Standard results
Neutrino disappearance
Solar neutrino deficit 8 s effect
Atmospheric neutrino anomaly 14 s effect
Neutrino Oscillations
Homestake, SAGE, GALLEX, SK, SNO KamLAND
SK and K2K
sin2 ?13 lt 0.047
  • ? m221 (7.3 - 9.1) 10-5 eV2
  • sin2 ?12 (0.23 0.37)

? m231 (1.4 3.3) 10-3 eV2 sin2 2?23 gt
0.90
M. Maltoni et al., New J. Phys. 6122, 2004
4
Standard results
No neutrino disappearance
  • Bugey (?e ? ?e)
  • L 15 m , 40 m, 95 m E? few MeV ?
    ?m2 0.01 1 eV2
  • CHOOZ and Palo Verde (?e ? ?e) for ?13 small
  • L 1000 m E? few MeV ? ?m2 10-3 eV2
  • CCFR84 (?? ? ??)
  • L 0.715 km and 1.116 km (2 detectors)
  • 40 GeV lt E? lt 230 GeV ? ?m2 10 100 eV2
  • CCFR (?? ? ??)
  • L 0.9-1.4 km 30 GeV lt E? lt 500 GeV ?
    ?m2 10 1000 eV2
  • CDHS (?? ? ??)
  • L 0.130 km and 0.835 km (2 detectors)
  • E? GeV ? ?m2 1 100 eV2

Y. Declais et al., Nucl. Phys. B434503, 1995
M. Apollonio et al., Phys. Lett. B466415,
1999 F. Boehm et al., Phys. Rev. D64112001, 2001
I. E. Stockdale et al., Phys. Rev. Lett. 521384,
1984
K. S. McFarland et al., Phys. Rev. Lett. 753993,
1995
F. Dydak et al., Phys. Lett. B134281, 1984
5
Standard results
No neutrino appearance
  • NOMAD (?? ? ?e)
  • L 0.635 km 1 GeV lt E? lt 100 GeV ? ?m2
    1 100 eV2
  • CCFR-NuTeV (?? ? ?e)
  • L 0.9-1.4 km 30 GeV lt E? lt 500 GeV ?
    ?m2 10 1000 eV2
  • KARMEN (?? ? ?e)
  • L 17.6 m 16 MeV lt E? lt 50 MeV ? ?m2 0.1
    10 eV2

P. Astier et al., Phys. Lett. B57019, 2003
A. Romosan et al., Phys. Rev. Lett. 782912, 1997
B. Armbruster et al., Phys. Rev. D65112001, 2002
So far, so good! No short baseline neutrino
anomaly Neutrino anomalies explained by
oscillations between 3 neutrinos ? 2 independent
?m2
6
Non-Standard result
Neutrino appearance
  • LSND (?? ? ?e)
  • L 30 m 20 MeV lt E? lt 52.8 MeV ? ?m2 1
    10 eV2
  • It did see ?e appearance!

A. Aguilar et al., Phys. Rev. D64112007, 2001
But ? m2atm ? msol ? ? m2LSND
7
The LSND experiment
A. Aguilar et al., Phys. Rev. D64112007, 2001
8
3.3 s effect
A. Aguilar et al., Phys. Rev. D64112007, 2001
G. Drexlin, Nucl.Phys.Proc.Suppl.118146-153,2003
9
The near future
MiniBooNE
10
THE SPECULATIONS
11
Classifying solutions
  • With and without sterile neutrinos
  • With one and with more than one sterile
  • With and without neutrino oscillations
  • With and without CPT violation
  • With non-standard and with standard processes
  • With and without extra dimensions
  • With problems and with problems
  • Those we like and those we dont like
  • Those we have proposed and those we havent
    proposed
  • No solution

But if LSND is right, all imply NEW PHYSICS!
12
4 neutrino models
22
31
?e ?? ?? ?s
? m2atm
? m2LSND
? m2LSND
? m2atm
? m2sol
? m2sol
J. T. Peltoniemi, D. Tommasini and J. F. W.
Valle, Phys. Lett. B298383, 1993 J. T.
Peltoniemi and J. F. W. Valle, Nucl. Phys.
B406409, 1993 D. O. Caldwell and R. N.
Mohapatra, Phys. Rev. D483259, 1993
Steriles would participate in solar and
atmospheric neutrino oscillations Ruled out at
5.1 s
Disfavored by SBL and atmospheric neutrino
experiments
M. Maltoni et al., New J. Phys. 6122, 2004
13
32 neutrino models
O. L. G. Peres and A. Yu. Smirnov, Nucl. Phys.
B5993,2001
? m2LSND2
? m2LSND1
? m2atm
? m2sol
Compatibility between SBL (including KARMEN) and
LSND of 30, instead of 3.6 in the standard 31
model
M. Sorel, J. M. Conrad and M. H. Shaevitz, Phys.
Rev. D66033009,2002
14
CPT violating spectra
?e ?? ??
?m2atm
?m2sol
H. Murayama and T. Yanagida, Phys. Lett.
B520263-268, 2001 G.Barenboim, L. Borissov and
J. Lykken, Phys.Lett.B534106-113,2002
15
4 neutrinos CPT violation
Assuming the same ?m2 for neutrinos and
antineutrinos but different mixings
  • 31 models
  • - U? 4 constrained by CCFR and atmospherics,
    not CDHS ? still some room
  • - Ue4 constrained by GALLEX
  • (?e disappearance during test with a 51Cr
    source)
  • 22 models
  • Too little sterile content on solar and
  • atmospheric neutrino oscillations ? Ruled out
  • Hybrid models
  • (31)? , (22)? no bound from solar neutrino
    data
  • (31)? , (22)? similar to (22) ? excluded

V. Barger, D. Marfatia and K. Whisnant, Phys.
Lett. B576303-308,2003
16
CPT violating decoherence
Quatum gravity models involve singular space-time
configurations space-time foam ? decoherence is
the result of particle propagation due to the
fuzzy properties of the background not
necessarily related to mass differences between
particles and antiparticles Simple model
effects only in the antineutrino sector and
diagonal decoherence matrix ? No spectral
distortions at KamLAND
Without KamLAND
With KamLAND
G. Barenboim and N. E. Mavromatos, JHEP01034,
2005
17
Lorentz violation
In the minimal Standard Model Extension (SME)
with Lorentz violation, neutrinos are massless
and oscillations are determined by 102 real
constants controlling the Lorentz violation
V. A. Kostelecký and M. Mewes, Phys. Rev.
D69016005, 2004
P (?? ? ?e) ' (heff)?e2 L2 ? for LSND
(heff)?e2 (3 x 10-19 GeV)2
aL 10-19 GeV cL 10-17
V. A. Kostelecký and M. Mewes, Phys. Rev.
D70076002, 2004
Unusual dependences for the oscillation phases
aL L and cL L E Predict, e.g., azimuthal
dependence for atmospheric neutrinos Constraints
(in the ? - ? sector) aL lt few 10-23 GeV cL lt
10-24
M. C. González-García and M. Maltoni. Phys. Rev.
D70033010, 2004
18
LNV muon decay
The ?L 2 decay ? ? e ?e ?? (? e, ?,
?) could explain LSND data if
K. S. Babu and S. Pakvasa, hep-ph/0204236
B. Armbruster et al., Phys. Rev. Lett. 90181804,
2004
Scale of new physics relatively low, ? 300-400
GeV, ? effects on low energy observables, e.g.,
the SM ? parameter in the Michel spectrum
Predicted ? 0.7485 TWIST experiment Measured
? 0.75080 0.00032 0.00097 0.00023
J. R. Musser et al., Phys. Rev. Lett. 94101805,
2005
19
Mass varying neutrinos
Matter effects on neutrinos due to the
interaction with a very light and weakly coupled
scalar particle could give rise to masses and
mixings which are enviroment dependent
Yukawa couplings
Nucleon number density
V(?)
  • LSND, KamLAND, K2K and Palo Verde are
  • in matter
  • Bugey and CHOOZ are in air
  • KARMEN is 50 in matter and 50 in air
  • CDHS is 90 in matter
  • It could accomodate 31 models an experiment
  • like Bugey but in matter should see
    disappearance
  • Limits for 22 models are very model dependent

D. B. Kaplan, A. E. Nelson and N. Weiner, Phys.
Rev. Lett. 93091801, 2004 K. M. Zurek, JHEP
0410058, 2004 V. Barger, D. Marfatia and K.
Whisnant, hep-ph/0509163
20
Shortcuts in extra dimesions
In some theories with extra dimensions, SM
particles propagate only in the brane, but non-SM
particles can also do it in the bulk. If the
brane is distorted ? shortcuts
?s travel faster
This induces an effective term in the hamiltonian
which introduces resonant mixing driven by ?, the
aspect ratio of the brane deformation
The key point evading CDHS bounds by a resonance
in the range 30 - 400 MeV
No effect
No bound
If Eres 30 100 MeV ? no
signal in MiniBooNE If Eres 200 400 MeV ?
impressive signature in MiniBooNE
H. Päs, S. Pakvasa and T. J. Weiler hep-ph/0504096
21
Neutrino oscillations decay
The decay option key ingredient to evade CDHS
bounds For small U?4 and short baselines
CDHS compares measurements at two detectors if
D1 D2 , no difference
This requires ?4 / m4 0.03-0.1 and m4 few eV
? g 103 -104 In contradiction with laboratory
bounds g lt 10-2
E. Ma, G. Rajasekaran and I. Stancu, Phys. Rev.
D61071302, 2000
22
Neutrino decay
31 model with a decay option but LSND
explained by decay
SPR, S. Pascoli and T. Schwetz, JHEP0509048, 2005
  • ?? produced in ? and ? decay
  • N4 produced in a fraction given by U?42
  • Subsequently N4 decays into light neutrinos

C. W. Kim and W. P. Lam, Mod. Phys. Lett. A5297,
1990
23
LSND analysis
  • Decay at
    rest (DAR)
  • ? ? e ?e ??
  • ?? contributes via helicity-conserving decays
    (same channel as in
    oscillations) ??
  • ? ? ? ??
  • ?? contributes via helicity-flipping decays
    (not in oscillations) monochromatic initial
    spectrum, ?0

Oscillations ?2min 5.6/9 Decay
?2min 10.8/9
SPR, S. Pascoli and T. Schwetz, JHEP0509048, 2005
24
Spectrum after decay
25
LSND and KARMEN
  • Compatibility of different data sets
    Parameter of Goodness of fit (PG)

M. Maltoni and T. Schwetz, Phys. Rev. D68033020,
2003
Oscillations ?2PG 5.02 ? 8.1 Decay
?2PG 4.97 ? 8.3
26
Global analysis
  • Mixing of ?e with N4 is not required ? we set
    Ue4 0
  • Only CDHS and atmospherics constrain the model

Best fit U?42 0.016 g m4 3.4 eV LSND vs
rest Osc PG 0.0018 Dec PG 4.6 32 PG
2.1 LSNDKARMEN vs rest Osc PG 0.025 Dec
PG 55
SPR, S. Pascoli and T. Schwetz, JHEP 0509048,
2005
27
The MiniBooNE signal
?? beam from ? decay E 700 MeV
and L 540 m Smaller impact of the spectral
distortion due to the initial spectrum
In addition, extending the model with an extra
neutrino and allowing for complex couplings, the
signal in the neutrino run might be suppressed
due to interference between oscillation and decay
amplitudes
28
Bounds
  • Laboratory bounds
  • Ue4 0 ? No effect on 0??? decay and tritium ?
    decay experiments
  • 2??? decay with emission of two scalars? geh lt
    O(1)
  • Pion and kaon decays ? g2 lt few 10-5
  • Supernova bounds
  • For g 10-5 , ?l ? ? N4 , ?l N4 ? ? , are
    much faster than weak interactions ? N4 and ? are
    trapped within the neutrinosphere
  • Cosmological bounds
  • For g 10-5, N4 and ? are thermalized at BBN?
    ?N?1.57

D. Dassie et al., Nucl. Phys. A678341, 2000
D. I. Britton et al., Phys. Rev. D4928, 1994 V.
D. Barger, W. Y. Keung and S. Pakvasa, Phys. Rev.
D25907, 1982 G. B. Gelmini, S. Nussinov and M.
Roncadelli, Nucl. Phys. B209157, 1982
For g m4 1 eV and g 10-5 ? m4 100 keV
29
  • THE RIGHT ONE

30
  • ??

31
Conclusions
  • Solar (8s) and atmospheric neutrino (14s)
    anomalies well understood in terms of
    oscillations
  • LSND the only (anti)neutrino appearance
    experiment with positive signal (3.3s) why
    shouldnt it be right?
  • Many possible solutions
  • if LSND is right, (hopefully) one must be right
  • We propose a new explanation in terms of a heavy
    (sterile) neutrino, N, mixed with ?? and coupled
    to a light scalar and light neutrinos
  • If so, we might need to forget about our
    prejudices on sacred principles, modify the
    Standard Model of Cosmology
  • We all will have more fun!
Write a Comment
User Comments (0)
About PowerShow.com