S'H'M' - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

S'H'M'

Description:

S.H.M.. KINEMATICS & PERIODICITY. BHS Physics 'Simple' ... BUNGIE JUMP SHM DEMO. BHS Physics. SHM Kinematics Graphs. 0 p/2 p 3/2p 2p. POSITION. VELOCITY ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 30
Provided by: stevew91
Category:
Tags: bungie

less

Transcript and Presenter's Notes

Title: S'H'M'


1
S.H.M.
  • KINEMATICS PERIODICITY

2
Simple Harmonic Motion
  • Motion which is reoccurring
  • Mass on spring
  • Horizontal
  • Vertical
  • Simple Pendulum

3
SHM Kinematics Graphs
  • See IP demo
  • BUNGIE JUMP SHM DEMO

4
SHM Kinematics Graphs
5
SHM Kinematics
POSITION
0 p/2
p 3/2p
2p

VELOCITY
-
0 p/2
p 3/2p
2p

ACCEL
-
0 p/2
p 3/2p
2p
6
SHM Kinematics
POSITION
0 p/2
p 3/2p
2p

VELOCITY
-
0 p/2
p 3/2p
2p

ACCEL
-
0 p/2
p 3/2p
2p
7
S.H.M. Terminology
  • Period (T) time for one complete oscillation
    (cycle)
  • Sec/cycle
  • Frequency (f) number of cycles in a given time.
  • Cycles/sec (Hertz) (Hz)
  • f 1/T
  • Amplitude (A) Magnitude of the displacement
    relative to equilibrium or center position.

8
SHM PERIODICITYMass - Spring System
  • See IP demo
  • MASS SPRING PERIOD

9
SHM SPRING-MASS
-A
A
0
Net force is attempting to return mass to
Equilibrium Position
A max displacement in x direction
- A max displacement in -x direction
10
Fundamental of SHM
Frestore a -x
Frestore -kx
k spring constant
11
SHM SPRING-MASS
-A
A
SOLVE FOR MAXIMUM VELOCITY
12
SHM SPRING-MASS
0
-A
A
SOLVE FOR MAXIMUM VELOCITY
13
SHM SPRING-MASS
0
-A
A
SOLVE FOR VELOCITY AT ANY POINT
14
Derive Period (T) Equation
T ?
T vs Mass?
T vs Amplitude?
T vs k (spring constant)?
T vs gravity?
15
The shadow cast by mass in circular motion
matches motion of mass oscillating on spring
R A
Mass in uniform circular motion at constant speed
16
PE spring 1/2 kDx2
PE spring 1/2 kA2
at x 0, KE mass PE spring
1/2 mvmax2 1/2 kA2
vmax2 (k/m)A2
17
Relate mass-spring to circular motion
Speed distance / time
V C/T
T C / V
18
T 2pA
T 2p
19
Mass - Spring System
T ind A
T ind g
20
Mass Spring SHM
A
- A
Net force is attempting to return mass to
Equilibrium Position
Restoring Force
A max displacement in x direction
- A max displacement in -x direction
21
Simple Pendulum
  • See IP demo
  • CC

22
Fundamental of SHM
Frestore a -x
23
SIMPLE PENDULUM
24
Derive Period (T) of Pendulum
T ?
T vs Mass?
T vs Amplitude?
T vs length?
T vs gravity?
25
Simple Pendulum
Fc 0
v 0
Wrad T
q
L
Net F Wtan -mgsin q
tan
T
Net F a sin q, not q
A
(Not true SHM)
Wrad
If q small, sin q q
q
Wtan
W
sin q A/L
Net F mgA/L
rad
26
Relate pendulum to circular motion
Speed distance / time
V C / T
T C / V
27
Net F is Center Seeking F
Net F Fc
Net F mgA/L
Fc mv2/R
mv2/R mgA/L
(RA)
v2 (g/L)A2
28
T 2pA
T 2p
29
Simple Pendulum
T ind mass
T ind q
(for small angles)
Write a Comment
User Comments (0)
About PowerShow.com