Practical Applications of Temporal and Event Reasoning - PowerPoint PPT Presentation

1 / 34
About This Presentation
Title:

Practical Applications of Temporal and Event Reasoning

Description:

Police arrested the suspect in the airport on Tuesday. ENTITY aid='a1' Police /ENTITY ... arrested /EVENT MAKEINSTANCE eiid='ei1' eid='e1' tense='past' ... – PowerPoint PPT presentation

Number of Views:72
Avg rating:3.0/5.0
Slides: 35
Provided by: valuedpowe
Category:

less

Transcript and Presenter's Notes

Title: Practical Applications of Temporal and Event Reasoning


1
Practical Applications of Temporal and Event
Reasoning
  • James Pustejovsky, Brandeis
  • Graham Katz, Osnabrück
  • Rob Gaizauskas, Sheffield
  • ESSLLI 2003
  • Vienna, Austria
  • August 25-29, 2003

2
Course Outline
  • Monday-
  • Theoretical and Computational Motivations
  • Overview of Annotation Task
  • Events and Temporal Expressions
  • Tuesday
  • Anchoring Events to Times
  • Relations between Events
  • Wednesday
  • Syntax of TimeML Tags
  • Semantic Interpretations of TimeML
  • Relating Annotations
  • Temporal Closure
  • Thursday
  • Automatic Identification of Expressions
  • Automatic Link Construction
  • Friday-
  • Outstanding Problems

3
Friday Topics
  • Events with Argument Binding
  • TimeML German Fragment
  • Outstanding Problems
  • TimeML-enabled Applications

4
Features in TimeML 2.0
  • Argument binding into Events
  • Pred feature in EVENT
  • General types with like entailments
  • Vendler classification
  • Scope of Negation and Modality
  • Represented on TLINK

5
Argument Binding into Events
6
Syntax of Entity
  • ltENTITYgt
  • attributes aid type agreement det
  • aid ID
  • aid argumentID
  • argumentID altintegergt
  • type ltnamed entity typegt
  • agreement ???
  • det athepossessivequant

7
Syntax of Arglink
  • ltARGLINKgt
  • attributes lid origin eventInstanceID
    (relatedEventInstanceID relatedArgumentID)
    preposition
  • lid ID
  • lid LinkID
  • LinkID lltintegergt
  • origin CDATA
  • eventInstanceID IDREF
  • eventInstanceID EventInstanceID
  • relatedEventInstanceID IDREF
  • eventInstanceID EventInstanceID
  • relatedArgumentID IDREF
  • argumentID argumentID
  • preposition CDATA

8
Example of Arguments 1
  • John left on Saturday.
  • ltENTITY aida1gt John lt/ENTITYgt
  • ltEVENT eide1 classOCCURRENCEgt
  • left
  • lt/EVENTgt
  • ltMAKEINSTANCE eiidei1 eide1 tensepast
    aspectnone/gt
  • ltSIGNAL sids1gt on lt/SIGNALgt
  • ltTIMEX3 tidt1 value20011014T112713gt Saturday
    lt/TIMEXgt
  • ltARGLINK eventInstanceIDei1 relatedEntityIDa1
    /gt
  • ltTLINK eventInstanceIdei1 relatedToTimet1
    RelType IS_INCLUDED/gt

9
Example of Arguments
  • Police arrested the suspect in the airport on
    Tuesday.
  • ltENTITY aida1gt Police lt/ENTITYgt
  • ltEVENT eide1 classOCCURRENCEgt
  • arrested
  • lt/EVENTgt
  • ltMAKEINSTANCE eiidei1 eide1 tensepast
    aspectnone/gt
  • ltENTITY aida2 detthegt the suspect lt/ENTITYgt
  • in
  • ltENTITY aida3 detthegt the airport lt/ENTITYgt
  • ltSIGNALgt on lt/SIGNALgt
  • ltTIMEX3 tidt1 value20011014T112713gt Saturday
    lt/TIMEXgt
  • ltARGLINK eventInstanceIDei1 relatedEntityIDa1
    /gt
  • ltARGLINK eventInstanceIDei1 relatedEntityIDa2
    /gt
  • ltARGLINK eventInstanceIDei1 relatedEntityIDa3
    prepostionin/gt
  • ltTLINK eventInstanceIdei1 relatedToTimet1
    RelType IS_INCLUDED/gt

10
Negation over Events Currently
  • Survivors
  • were
  • not
  • ltEVENT eid"e1" class"OCCURRENCE"
    pred"TEACH"gt
  • found
  • lt/EVENTgt
  • ltSIGNAL sid"s1"gt
  • on
  • lt/SIGNALgt
  • ltTIMEX3 tid"t2" type"DATE" value"XXXX-WXX-1"gt
  • Monday
  • lt/TIMEX3gt
  • ltMAKEINSTANCE eventID"e1" eventInstanceID"ei1"
    " negationTRUE"gt
  • ltTLINK eventInstanceID"ei1" signalID"s1"
    relatedToTime"t2" relType"IS_INCLUDED"/gt
  • No survivors were found.
  • ltMAKEINSTANCE eventID"e1" eventInstanceID"ei1"
    " negationFASLE"gt
  • ltTLINK eventInstanceID"ei1" signalID"s1"
    relatedToTime"t2" relType"IS_INCLUDED"/gt

11
Quantifiers and Negation 1
  • Survivors were not found on Monday.
  • ltENTITY aida1gt Survivors lt/ENTITYgt
  • Were
  • ltSIGNAL gt not lt/SIGNALgt
  • ltEVENT eide1 classOCCURRENCE predfind
    tensepast aspectnonegt
  • found
  • lt/EVENTgt
  • ltSIGNAL sid s1gt on lt/SIGNALgt
  • ltTIMEX3 tidt1 value20011014T112713gt Monday
    lt/TIMEXgt
  • ltARGLINK eventIDei1 relatedEntityIDa1 /gt
  • ltTLINK eventIdei1 relatedToTimet1
    Polarity NEG RelType IS_INCLUDED/gt

12
Quantifiers and Negation 2
  • No survivors were found on Monday.
  • ltENTITY aida1 quantNOgt No survivors
    lt/ENTITYgt
  • were
  • ltEVENT eide1 classOCCURRENCE predfind
    tensepast aspectnonegt
  • found
  • lt/EVENTgt
  • ltSIGNAL sid s1gt on lt/SIGNALgt
  • ltTIMEX3 tidt1 value20011014T112713gt Monday
    lt/TIMEXgt
  • INTENDED INTERPRETATION
  • ltARGLINK eventIDei1 relatedEntityIDa1 /gt
  • ltTLINK eventIdei1 relatedToTimet1
    Polarity FALSE RelType IS_INCLUDED/gt
  • Reference to the Argument (no survivors)
    provides a resource to the interpretation
    function for determining the polarity of the
    TLINK.

13
TimeML German Fragment
  • (Due to Frank Schilder, ms. 2003)

14
TimeML in German
  • Corpus study in German focussing on the
    preposition in.
  • Ca. 100 occurrences of the preposition in
    extracted from taz articles
  • Marked with simplified TimeML
  • Only TLINKS
  • Different Aspect specification
  • Marked with additional features (see below)
  • Goal definition of a semantics for the
    proposition in considering
  • Aspectual classes
  • Granularity
  • Reference time

Schilder (2003)
15
German temporal and event expressions
  • Different tense and aspect system
  • Usage of tenses
  • Present tense is ambiguous wrt. Present/future
    tense.
  • No progressive form
  • (Past perfect preferred tense in spoken language
    for expressing past events)
  • Aspectual information not morphologically encoded
    in a consistent way
  • Different Aktionsarten
  • Ingressive verlieben (to fall in love)
  • Exgressive verblühen (to wither)
  • Semelfactive husten (to cough)
  • Iterative hüsteln (coughing)
  • No imperfective/perfective aspect

Schilder (2003)
16
German temporal and event expressions
  • Different syntactical structure
  • Prefix-verbs ausschließen (exclude) / schließen
    (close) Die Bedingungen schließen einen Verkauf
    aus
  • Reflexive verbs sich entwickeln (come out) /
    entwickeln (develop)
  • Complex verb constructions sich in der Lage
    sehen etwas zu tun (feel capable of doing
    something)
  • Sah sich die Polizei schon bisher nicht in der
    Lage
  • , dass die die Polizei sich schon bisher nicht in
    der Lage sah
  • Normally, Verbs are at position 2, but
  • Participle verbs come at the end of a clause and
  • Subordinate clauses and relative clauses end of
    clause

Schilder (2003)
17
  • Schröder hatte bereits am Wochenende
    signalisiert, dass er eine dritte Amtszeit
    anstrebt.
  • 29.8.03
  • ltENTITY aida1gt Schröder lt/ENTITYgt
  • hatte
  • bereits
  • ltSIGNALgt am lt/SIGNALgt
  • ltTIMEX3 tidt1 type date valueYYYY-XX-WEgt
    Wochenende lt/TIMEXgt
  • ltEVENT eide1 classOCCURRENCEgt signalisiert
    lt/EVENTgt
  • ltMAKEINSTANCE eiidei1 eide1 tensepast
    aspectnone/gt
  • ltSLINK eventInstanceID"ei1" subordinatedEvent"ei
    2 relType"MODAL"/gt
  • ltTLINK eventInstanceIdei1 relatedToTimet1
    RelType IS_INCLUDED/gt
  • dass
  • ltENTITY aida2 gt er lt/ENTITYgt
  • ltENTITY aida3 deteinegt eine dritte Amtszeit
    lt/ENTITYgt
  • ltEVENT eide1 classOCCURRENCEgt anstrebt
    lt/EVENTgt
  • ltMAKEINSTANCE eiidei2 eide2 tensepresent
    aspectnone/gt
  • ltARGLINK eventInstanceIDei1 relatedEntityIDa1
    /gt
  • ltARGLINK eventInstanceIDei1 relatedEventIDei2
    /gt

18
Outstanding Problems
19
Semantics of TimeML
  • A text T is satisfied by a model M iff there are
    functions
  • fe Dome -gt Pow(E), and
  • fei Domei -gt E
  • ft Domt -gt I , such that
  • for all tags t ?Tag(T), t is satisfied by fe fei
    and ft in M.
  • A tag t is satisfied by fe,ft, and fei in M iff
    if t has the form
  • ltEVENT eid ? class ? pred ? gt then fe(?)
    Val(?)
  • ltTIMEX3 tid ? type DATE value ? gt then
    ft(?) Val(?)
  • ltTLINK eventInstanceID ? relatedtoTime ?
    relType IS_INCLUDEDgt then ?(fei(?)) ? ft (
    ?)

20
Problems for Interpretation
  • Negation
  • John didnt teach on TuesdayltEVENT eid
    ei1predTEACHgt ltMAKEINSTANCE eiid
    eii1negationtruegtltTIMEX3 tidt1
    valXXXX-WXX-2gtltTLINK relatedToTime t1
    eventInstanceeii1 relationIS_INCLUDEDgt
  • -gt SCOPE for negation
  • Multiple Events
  • John taught twice on TuesdayltEVENT eid
    ei1predTEACHgt ltMAKEINSTANCE eiid eii1
    evente1 cardinality2gtltTIMEX3 tidt1
    valXXXX-WXX-2gtltTLINK relatedToTime t1
    eventInstanceeii1 relationIS_INCLUDEDgt
  • ltMAKEINSTANCE eiid ? eid ? negationFALSE
    modal cardinality?gt then fei(?) ? fe(?)
    ltMAKEINSTANCE eiid eii1 evente1
    gtltMAKEINSTANCE eiid eii2 evente1 gt
  • Condition on Embedding Functions

21
Problems for TimeML
  • Set-valued Times
  • John taught ltTIMEX3 tidt4 typeSET
    valueP1M quantEVERY freq3Dgt three days
    every monthlt/TIMEX3gt
  • PROBLEM the temporal identifier cant be
    interpreted as denoting a particular interval of
    time, it must be a set of intervals (or even a
    set of sets of intervals!)
  • Disjunction
  • John taught on Monday or on Wednesday

22
Some Solutions
  • Negation
  • Use TLINK as a scope domain, eliminate
    MAKEINSTANCE
  • John didnt teach on TuesdayltEVENT eid
    ei1predTEACHgt ltTIMEX3 tidt1
    valXXXX-WXX-2gtltTLINK relatedToTime t1
    eventIDei1 relationIS_INCLUDED
    Polarityfalsegt
  • New TLINK Rules
  • ltTLINK eventID ? relatedtoTime ? relType
    IS_INCLUDED Polaritytruegt there is an e ?
    E such that e ? fe(?) and ?(e) ? ft ( ?)
  • ltTLINK eventID ? relatedtoTime ? relType
    IS_INCLUDED Polarityfalsegt
  • there is no e ? E such that e ? fe(?) and ?(e) ?
    ft ( ?)

23
Some Solutions
  • Multiple events
  • Add cardinality element to the TLINK
  • John taught twice on TuesdayltEVENT eid
    ei1predTEACHgt ltTIMEX3 tidt1
    valXXXX-WXX-2gtltTLINK relatedToTime t1
    eventIDei1 relationIS_INCLUDED
    Polaritytrue cardinality2gt
  • ltTLINK eventID ? relatedtoTime ? relType
    IS_INCLUDED Polaritytrue cardinality?gt is
    satisfied iffthere are Val(?) distinct e ? E
    such that e ? fe(?) and ?(e) ? ft ( ?)

24
Harder Problems
  • Vagueness
  • When he left, shortly after 5 am Tuesday, he
    discovered someone had smashed a window.
  • Appavu has been involved with healthcare
    standards development for about a decade, an
    interest he developed shortly after he began
    working with information systems at Cook County.
  • Domino's Pizza of Washington reported that they
    delivered "In excess" of 100 large pizzas to the
    White House late this afternoon.
  • It was then,early in December of 1977, that he
    went to the NORML conference.

25
Vagueness
  • Current Treatment
  • ltTIMEX3 tidt1 val20030829TAFT modENDgt
    late this afternoon lt/TIMEX3gt
  • ltTIMEX3 tidt1 val197712 modSTARTgt early
    in December of 1977 lt/TIMEX3gt
  • Problem
  • No semantics for mod attributes means no
    possibility for doing reasoning.
  • It was then,early in December of 1977, that he
    went to the NORML conference. Two weeks later he
    was a convert.
  • Before or after Christmas?
  • We might fake a solution by being overly general
  • Interpret START to mean the first half of

26
Current Treatment
  • No general solution for mod values
  • Shortly after 5am -gt minutes
  • Shortly after he began working -gt weeks or months

27
Semantic Weakness
  • Simple annotation of temporal relations is too
    week
  • President John F. Kennedy's gravesite at
    Arlington National Cemetery has been restored to
    its original condition, after someone tried
    unsuccessfully to dig up some of its granite
    paving stones.
  • South Africa, after losing the toss, were bowled
    out for 107 against England.
  • How long after?
  • Days or weeks
  • An hour or two.
  • This is not generally encoded overtly.

28
Context Dependent Vagueness
  • If we did code this, lots of world-knowledge
    based information could be encoded by annotators
  • They ate lunch early on Monday.
  • They ate dinner early on Monday.
  • They ate breakfast early on Monday.
  • Probably
  • before noon
  • in the early evening
  • in the very early morning

29
Questions
  • How to talk about a likely distribution in
    time?
  • How to compare such annotations?

30
TimeML-enabled Applications
31
Web-basedTemporal Reasoning
  • Web Negotiation Agents (Brokers)
  • Scheduling Programs

32
Semantic Web
Delivery within five business days. ltEVENT
eid"e1" class"OCCURRENCE" tense"NONE"
aspect"NONE"gt order lt/EVENTgt ltMAKEINSTANCE
eiid"ei1" eventID"e1"/gt ltEVENT eid"e2"
class"OCCURRENCE" tensenil aspect"PERFECTIVE"gt
delivery lt/EVENTgt ltMAKEINSTANCE eiid"ei2"
eventID"e2"/gt ltSIGNAL sid"s1"gt within lt/SIGNALgt
ltTIMEX3 tid"t1" type"DURATION" valuenil
temporalFunction"true"gt five business
days lt/TIMEX3gt ltTLINK eventInstanceID"ei2"
signalID"s1" relatedToEvent"ei1
relType"AFTER" /gt ltTLINK eventInstanceID"ei2"
signalID"s1" relatedToTime"t1
relType"IS_INCLUDED" /gt ltTLINK
eventInstanceID"ei1" signalID"s1"
relatedToTime"t1 relType" BEGINS" /gt
33
Scheduling Issues
  • Mary teaches on Mondays and Wednesdays in the
    fall.
  • Sophie goes to daycare on Thursday and Friday at
    400pm in October.

34
www.TimeML.org
Write a Comment
User Comments (0)
About PowerShow.com