Symmetry in Maps - PowerPoint PPT Presentation

About This Presentation
Title:

Symmetry in Maps

Description:

z(Wx) = g(W)(zx), x 2 M, W 2 Mon(M). g,z - both surjective. ... M with a given edge color T,L,R. Each edge lifts to an edge of the same color. Voltage: : E(Tr(M) ... – PowerPoint PPT presentation

Number of Views:21
Avg rating:3.0/5.0
Slides: 32
Provided by: fmfU
Category:

less

Transcript and Presenter's Notes

Title: Symmetry in Maps


1
Symmetry in Maps
2
Notation
  • ?0 L
  • ?1 R
  • ?2 T
  • T (1 2)(3 4)
  • L (2 3)(1 4)
  • R (2 3)(1 4)

R
L
T
3
Mon(M), Or(M)
  • Mon(M) ltT,L,Rgt
  • Example
  • T (1 8)(2 3)(4 5)(6 7)
  • L (1 4)(2 7)(3 6)(5 8)
  • R (1 2)(3 4)(5 6)(7 8)
  • Or(M) ltTR,RLgt
  • ind IndMon(M)Or(M) 2.
  • ind 1 ... nonorientable
  • ind 2 ... orientable
  • Mon(M) 4E (if M acts transitively on ?M)

2
3
1
4
8
5
6
7
B2 in the torus.
4
Morphisms of Maps
  • f M ! N is a map morphism if f (g,z)
  • g Mon(M) ! Mon(N)
  • g - homomorphism
  • g(T) T, g(L) L, g(R) R.
  • z ?M ! ?N.
  • z(Wx) g(W)(zx), x 2 ?M, W 2 Mon(M).
  • g,z - both surjective.
  • f - isomorphism, if both b,z bijective.

5
Theorem
  • Theorem Morphisms between maps M and N are in
    one to one correspondence with covering
    projections between graphs Co(M) and Co(N).

6
Aut(M)
  • Group of map automorphisms.
  • Aut(M) Mon(M)
  • Aut(M) 4E(M) Mon(M).
  • In our example
  • Aut(M) 8 Mon(M).
  • Aut(M) Mon(M).

7
Dual Revisited
  • By interchanging the role of T and L we obtain
    the dual.
  • The map on the left is self-dual. This means that
    M is isomorphic to Du(M) by f.
  • f(1) 6, f(2) 5, f(3) 8, f(4) 7, f(5)
    2, f(6) 1, f(7) 4, f(8) 3.
  • f2 id.

2
3
1
4
8
5
6
7
B2 in the torus and its dual.
8
Aut(M) 4E(M)
  • Theorem. Let x 2 ?M. Each ? 2 Aut(M) is
    determined by y 2 ?M such that y ?(x).
  • CorollaryAut(M) ?M 4E(M).
  • A map M with Aut(M) 4E(M) is called
    reflexive.

9
Edge-transitive Map
  • A map M is edge-transitive if Aut(M) acts
    transitively on E(M).
  • Note The 1-skeleton G(M) of an edge-transitive
    map is an edge-transitive graph. The converse is
    not true in general.

10
Homework
  • H1. Determine the Petrie dual of our example.

11
Non-degenerate edge-transitive maps
  • A map is non-degenerate if and only if the
    minimal valence of graph, dual graph and petrie
    graph is at least 3.

12
The Petrie dual
  • Each map is defined by three involutions on flags
    (t0,t1,t2). Now add the product t3t0t2, that is
    another fixedpoint free involution. This can be
    viewed as an rank 4 incidence geometry
    (t0,t1,t2,t3).
  • Orbits for ltt1,t2gt form the vertex set V.
  • Orbits for ltt0,t2gt form the edge set E.
  • Orbits for ltt0,t1gt form the face set F.
  • Orbits for ltt1,t3gt form the Petrie walks P.

Du
V
F
E
Op
Pe
P
13
The Petrie hexagon
M
  • M (t0,t1,t2,t3)
  • Du(M) (t2,t1,t0,t3)
  • Pe(M) (t0,t1,t3,t2)
  • Du(Pe(M)) (t3,t1,t0,t2)
  • Pe(Du(M)) (t2,t1,t3,t0)
  • Pe(Du(Pe(M))) Du(Pe(Du(M))) (t0,t1,t3,t2)

Du(M)
Pe(M)
Du(Pe(M))
Pe(Du(M))
Pe(Du(Pe(M))) Du(Pe(Du(M)))
14
Group Or(M) revisited
  • Or(M) contains all even words. It acts on ?. If
    the action on Or(M) has two orbits, then we may
    partition the set of flags into two subsetes ?
    and ?-.
  • M orientable iff Or(M) has TWO orbits.

15
Local Automorphisms
  • Rooted maps. (Maps rooted in a flag!!!)
  • Local automorphisms (around the edge)
  • There are 14 possible types.

16
Local situation - Notation
  • i - (identity flag)
  • e - edge
  • x1 - close vertex
  • x2 - far vertex
  • f1 - close face
  • f2 - far face

f1
i
e
x1
x2
f2
17
Local automorphisms - Notation
?2 i
  • i - (identity flag)
  • Involutions ? i, ? i, ? i
  • Rotations ?x1 i, ?f1 i, ?1 i
  • Involutions q1 i, q2 i, q3 i, q4 i,
  • Rotations ?x2 i, ?f2 i, ?2 i
  • Exercise Draw the missing three rotations in
    the Figure on the left.

?f1 i
f1
?1 i
li
i
sx1i
e
x1
x2
fi
?i
f2
?1 i
?3 i
?4 i
18
Formal Definitions
  1. id
  2. ?x1 TR
  3. ?x2 LRTL
  4. ?f1 RL
  5. ?f2 LTRT
  6. g1 RTL
  7. g2 LRT
  8. q1 R
  9. q2 LRL
  10. q3 TRT
  11. q4 LTRTL
  12. t T
  13. l L
  14. f TR
  • Each of the fourteen elements of Mon(M) on the
    left can be expressed as a word in T,R,L.
  • We are sure that id 2 Aut(M). However, other
    elements may or may not belong to Aut(M).

19
Type of edge-transitive map
  • 1
  • 2
  • 2P
  • 2ex
  • 2Pex
  • 3
  • 4
  • 4
  • 4P
  • 5
  • 5
  • 5P

20
Map symbol of edge-transitive map
  • (abc) 1
  • (aa'bc) 2
  • (abb'c) 2
  • (abcc') 2P
  • (abc) 2ex
  • (abc) 2ex
  • (abc) 2Pex
  • (aa'bb'cc') 3
  • (aa'bc) 4
  • (abb'c) 4
  • (abcc') 4P
  • 5
  • 5
  • 5P

21
Facts
  • Du(1)

22
Small example
  • On the left we see a map on the Klein bottle.

23
Homework
  • H1. Prove that in a reflexive rooted map the
    group lt?,?,?1gt acts transitively on the flags.

24
Coverings of combinatorial maps
  • Each morphism of maps is a covering projection.

25
Lifting automorphisms
f 2 Aut X
X
X
p
p
f 2 Aut X
X
X
26
CT(X)
  • CT(X) it the group of covering transformations.

27
Regular Covers
  • Covering is regular if and only if CT(X) acts
    regularly on the fibers p-1(x).

28
Voltages for maps
  • Combinatorial map Co(M) of M with a given edge
    color T,L,R.
  • Each edge lifts to an edge of the same color.
  • Voltage ? E(Tr(M)) ? ?.
  • Instead of edge we assign voltages to the colored
    edges.
  • ?(Te) ?(e)-1.
  • ?(Le) ?(e)-1.
  • ?(Re) ?(e)-1.
  • ?(e)?(Le) ?(e)?(Te). edges to edges...

29
Voltages for Maps
  • ? (?,?,?).
  • For each ?, ?, ? we get a map.

30
Example 1
31
Theorem
  • Let M be a map, G a group and ?Co(M) ! G a
    voltage assignment. Let M be the derived map.
  • Let f 2 Aut(M)
Write a Comment
User Comments (0)
About PowerShow.com