1. Quantum-critical transport - PowerPoint PPT Presentation

1 / 99
About This Presentation
Title:

1. Quantum-critical transport

Description:

Constraints from duality relations. 3. Quantum criticality ... The self-duality of the 4D abelian gauge fields leads to ... Geometric interpretation of RG flow ... – PowerPoint PPT presentation

Number of Views:44
Avg rating:3.0/5.0
Slides: 100
Provided by: qptPhysic
Category:

less

Transcript and Presenter's Notes

Title: 1. Quantum-critical transport


1
(No Transcript)
2
(No Transcript)
3
1. Quantum-critical transport
Collisionless-t0-hydrodynamic crossover of
CFT3s 2. Exact solution from AdS/CFT
Constraints from duality relations 3. Quantum
criticality of Dirac fermions Vector
1/N expansion 4. Quantum criticality of Fermi
surfaces The genus expansion
4
1. Quantum-critical transport
Collisionless-t0-hydrodynamic crossover of
CFT3s 2. Exact solution from AdS/CFT
Constraints from duality relations 3. Quantum
criticality of Dirac fermions Vector
1/N expansion 4. Quantum criticality of Fermi
surfaces The genus expansion
5
The Superfluid-Insulator transition
Boson Hubbard model
M.P. A. Fisher, P.B. Weichmann, G. Grinstein,
and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
6
Superfluid-insulator transition
M. Greiner, O. Mandel, T. Esslinger, T. W.
Hänsch, and I. Bloch, Nature 415, 39 (2002).
7
Insulator (the vacuum) at large U
8
Excitations
9
Excitations
10
Excitations of the insulator
11
(No Transcript)
12
CFT3
13
(No Transcript)
14
Classical vortices and wave oscillations of the
condensate
Dilute Boltzmann/Landau gas of particle and holes
15
CFT at Tgt0
16
Resistivity of Bi films
D. B. Haviland, Y. Liu, and A. M. Goldman, Phys.
Rev. Lett. 62, 2180 (1989)
M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)
17
Quantum critical transport
S. Sachdev, Quantum Phase Transitions, Cambridge
(1999).
18
Quantum critical transport
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
19
Quantum critical transport
P. Kovtun, D. T. Son, and A. Starinets, Phys.
Rev. Lett. 94, 11601 (2005) , 8714 (1997).
20
Quantum critical transport
21
Quantum critical transport
22
Quantum critical transport
23
Density correlations in CFTs at T gt0
24
(No Transcript)
25
Conformal mapping of plane to cylinder with
circumference 1/T
26
Conformal mapping of plane to cylinder with
circumference 1/T
27
Density correlations in CFTs at T gt0
No hydrodynamics in CFT2s.
28
Density correlations in CFTs at T gt0
29
Density correlations in CFTs at T gt0
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
30
Density correlations in CFTs at T gt0
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
31
1. Quantum-critical transport
Collisionless-t0-hydrodynamic crossover of
CFT3s 2. Exact solution from AdS/CFT
Constraints from duality relations 3. Quantum
criticality of Dirac fermions Vector
1/N expansion 4. Quantum criticality of Fermi
surfaces The genus expansion
32
1. Quantum-critical transport
Collisionless-t0-hydrodynamic crossover of
CFT3s 2. Exact solution from AdS/CFT
Constraints from duality relations 3. Quantum
criticality of Dirac fermions Vector
1/N expansion 4. Quantum criticality of Fermi
surfaces The genus expansion
33
(No Transcript)
34
(No Transcript)
35
Collisionless to hydrodynamic crossover of SYM3
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son,
Phys. Rev. D 75, 085020 (2007)
36
Collisionless to hydrodynamic crossover of SYM3
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son,
Phys. Rev. D 75, 085020 (2007)
37
Universal constants of SYM3
C. Herzog, JHEP 0212, 026 (2002)
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son,
Phys. Rev. D 75, 085020 (2007)
38
Electromagnetic self-duality
39
K a universal number analogous to the level
number of the Kac-Moody algebra in 11 dimensions
40
(No Transcript)
41
C. Dasgupta and B.I. Halperin, Phys. Rev. Lett.
47, 1556 (1981)
42
C. Dasgupta and B.I. Halperin, Phys. Rev. Lett.
47, 1556 (1981)
43
C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son,
hep-th/0701036
44
The self-duality of the 4D abelian gauge fields
leads to
C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son,
hep-th/0701036
45
The self-duality of the 4D abelian gauge fields
leads to
C. Herzog, P. Kovtun, S. Sachdev, and D.T. Son,
hep-th/0701036
46
Electromagnetic self-duality
47
1. Quantum-critical transport
Collisionless-t0-hydrodynamic crossover of
CFT3s 2. Exact solution from AdS/CFT
Constraints from duality relations 3. Quantum
criticality of Dirac fermions Vector
1/N expansion 4. Quantum criticality of Fermi
surfaces The genus expansion
48
1. Quantum-critical transport
Collisionless-t0-hydrodynamic crossover of
CFT3s 2. Exact solution from AdS/CFT
Constraints from duality relations 3. Quantum
criticality of Dirac fermions Vector
1/N expansion 4. Quantum criticality of Fermi
surfaces The genus expansion
49
d-wave superconductivity in cuprates
Electron states occupied
50
d-wave superconductivity in cuprates
-


-
51
d-wave superconductivity in cuprates
-


-
52
d-wave superconductivity in cuprates
4 two-component Dirac fermions
53
d-wave superconductivity in cuprates
54
Time-reversal symmetry breaking
55
Lattice rotation symmetry breaking
56
M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev.
Lett. 85, 4940 (2000) E.-A. Kim, M. J. Lawler, P.
Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson,
Phys. Rev. B 77, 184514 (2008).
57
Ising order and Dirac fermions couple via a
Yukawa term.
Nematic ordering
Time reversal symmetry breaking
M. Vojta, Y. Zhang, and S. Sachdev, Physical
Review Letters 85, 4940 (2000)
58
Ising order and Dirac fermions couple via a
Yukawa term.
Nematic ordering
Time reversal symmetry breaking
M. Vojta, Y. Zhang, and S. Sachdev, Physical
Review Letters 85, 4940 (2000)
59
Expansion in number of fermion spin components Nf
Integrating out the fermions yields an effective
action for the scalar order parameter
Y. Huh and S. Sachdev, Physical Review B 78,
064512 (2008).
60
(No Transcript)
61
1. Quantum-critical transport
Collisionless-t0-hydrodynamic crossover of
CFT3s 2. Exact solution from AdS/CFT
Constraints from duality relations 3. Quantum
criticality of Dirac fermions Vector
1/N expansion 4. Quantum criticality of Fermi
surfaces The genus expansion
62
1. Quantum-critical transport
Collisionless-t0-hydrodynamic crossover of
CFT3s 2. Exact solution from AdS/CFT
Constraints from duality relations 3. Quantum
criticality of Dirac fermions Vector
1/N expansion 4. Quantum criticality of Fermi
surfaces The genus expansion
63
Quantum criticality of Pomeranchuk instability
64
Electron Greens function in Fermi liquid (T0)
65
Electron Greens function in Fermi liquid (T0)
66
Quantum criticality of Pomeranchuk instability
67
Quantum criticality of Pomeranchuk instability
68
Quantum criticality of Pomeranchuk instability
69
Quantum criticality of Pomeranchuk instability
70
Quantum criticality of Pomeranchuk instability
Quantum critical
71
Quantum criticality of Pomeranchuk instability
Quantum critical
Classical d2 Ising criticality
72
Quantum criticality of Pomeranchuk instability
Quantum critical
D21 Ising criticality ?
73
Quantum criticality of Pomeranchuk instability
74
Quantum criticality of Pomeranchuk instability
75
Quantum criticality of Pomeranchuk instability
76
Quantum criticality of Pomeranchuk instability
77
Quantum criticality of Pomeranchuk instability
78
Quantum criticality of Pomeranchuk instability
Hertz theory
79
(No Transcript)
80
Quantum criticality of Pomeranchuk instability
Sung-Sik Lee, Physical Review B 80, 165102 (2009)
81
Quantum criticality of Pomeranchuk instability
A string theory for the Fermi surface ?
82
(No Transcript)
83
(No Transcript)
84
(No Transcript)
85
(No Transcript)
86
(No Transcript)
87
(No Transcript)
88
(No Transcript)
89
(No Transcript)
90
(No Transcript)
91
(No Transcript)
92
(No Transcript)
93
(No Transcript)
94
(No Transcript)
95
Greens function of a fermion
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh,
arXiv0907.2694
See also M. Cubrovic, J Zaanen, and K. Schalm,
arXiv0904.1993
96
Greens function of a fermion
T. Faulkner, H. Liu, J. McGreevy, and D. Vegh,
arXiv0907.2694
Similar to non-Fermi liquid theories of Fermi
surfaces coupled to gauge fields, and at quantum
critical points
97
Free energy from gravity theory
F. Denef, S. Hartnoll, and S. Sachdev,
arXiv0908.1788
98
Conclusions
General theory of finite temperature dynamics
and transport near quantum critical points, with
applications to antiferromagnets, graphene, and
superconductors
99
Conclusions
The AdS/CFT offers promise in providing a new
understanding of strongly interacting quantum
matter at non-zero density
Write a Comment
User Comments (0)
About PowerShow.com