Title: Recall our discussion of ZYX Euler angles
1Recall our discussion of Z-Y-X Euler angles
2Consider the A and B frames shown below.
3(No Transcript)
4(No Transcript)
5(No Transcript)
6(No Transcript)
7Inverse of a homogeneous transformation matrix
Review
8Inverse of a homogeneous transformation matrix
9Inverse of a homogeneous transformation matrix
10Inverse of a homogeneous transformation matrix
11Inverse of a homogeneous transformation matrix
12Inverse of a homogeneous transformation matrix
13Inverse
14Inverse
15Take transpose of rotation matrix.
16Take transpose of rotation matrix.
17Take transpose of rotation matrix.
18Reverse displacement vector.
19Reverse displacement vector.
20Reverse displacement vector.
21Refer reversed displacement vector to B frame
22Refer reversed displacement vector to B frame
23Refer reversed displacement vector to B frame
24Refer reversed displacement vector to B frame
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31Returning for a moment to our Euler angles a, b,
g
32In the notation of Craig, this rotation matrix
(often called direction-cosine matrix) is
denoted by
33In the notation of Craig, this rotation matrix
(often called direction-cosine matrix) is
denoted by
34In the notation of Craig, this rotation matrix
(often called direction-cosine matrix) is
denoted by
35This direction-cosine matrix is an important
component of the homogeneous-transformation
matrix of our forward kinematics.
36Recall that we moved the stationary A frame over
to the moving E frame to illustrate the meaning
of the elements of this rotation matrix.
37Recall that we moved the stationary A frame over
to the moving E frame to illustrate the meaning
of the elements of this rotation matrix,
38Thus, this direction-cosine or rotation matrix
may be expressed either in terms of the min.
number of 3 coordinate, say a, b, g, or, as with
our forward kinematics, in terms of q1, q2 .
39Is there a systematic way, for a general
(holonomic) robot, to build in terms
of q1, q2 ?
40Is there a systematic way, for a general
(holonomic) robot, to build in terms
of q1, q2 ?
41Is there a systematic way, for a generic link
of a robot, to build in terms of
qi ?
42Call this link i-1.
43We apply to link i-1 the widely used
Denavit- Hartenberg convention.
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50(No Transcript)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)
58(No Transcript)
59(No Transcript)
60(No Transcript)
61(No Transcript)
62Denavit Hartenberg parameters
63Denavit Hartenberg parameters
64Denavit Hartenberg parameters
65Three constants
66 and one variable.
67(No Transcript)
68(No Transcript)
69(No Transcript)
70(No Transcript)
71(No Transcript)
72(No Transcript)
73(No Transcript)
74(No Transcript)
75(No Transcript)
76(No Transcript)
77(No Transcript)
78(No Transcript)
79(No Transcript)
80(No Transcript)
81(No Transcript)
82(No Transcript)
83(No Transcript)
84(No Transcript)
85(No Transcript)
86(No Transcript)
87(No Transcript)
88(No Transcript)
89D-H Example
90D-H Example
91D-H Example Puma 560
92D-H Example Puma 560
93D-H Example Puma 560
94First three rotations of Puma
95First three rotations of Puma
96i-11
97i-11
98The first rotation q1 occurs about the Z1 axis.
99The second rotation q2 occurs about the Z2 axis.
100However, the Z2 axis and the Z1 axis intersect
one another.
101(No Transcript)
102Therefore the X1 axis may be oriented arbitrarily.
103Therefore the X1 axis may be oriented arbitrarily.
104(No Transcript)
105Since the two frames share their origin, a1d20
106Since the two frames share their origin, a1d20
107But what about a1?
108But what about a1?
109But what about a1?