CORE MRP II - PowerPoint PPT Presentation

1 / 49
About This Presentation
Title:

CORE MRP II

Description:

MANUFACTURING RESOURCE PLANNING. Dispatching. Purchasing. MBA 510 ... Tt Trend component in period t. a Base-level smoothing parameter (0 a 1) ... – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 50
Provided by: marksp4
Category:
Tags: core | mrp | manufacture

less

Transcript and Presenter's Notes

Title: CORE MRP II


1
CORE MRP II
MANUFACTURING RESOURCE PLANNING
2
FORECASTING
  • Time-series (intrinsic) models
  • Time series components
  • Base-level forecasting models
  • Evaluating forecasting models Mad versus Bias
  • Adding trend and seasonality
  • Selecting a technique

3
TIME-SERIES (INTRINSIC) FORECASTING MODELS
  • Make no assumption about what causes sales
  • Identify patterns in past data
  • Project those patterns into the future
  • Also called autoprojection, intrinsic techniques

4
TIME SERIES COMPONENTS
  • Predictable components
  • Base level
  • Trend
  • Seasonality
  • Unpredictable components
  • Randomness
  • All time series techniques work by
  • Smoothing randomness out of the past data
  •  Projecting the leftover pattern implied by these
    predictable components into the future

5
SHORT-TERM FORECASTING TECHNIQUES
  • Assume absence of trend and seasonality
  • Separate base-level (average level) from the
    randomness
  • Some useful models
  • Moving Averages
  • Exponential Smoothing

6
BASE-LEVEL FORECASTING MODELS
  • Assume absence of trend and seasonality
  • Separate base-level from randomness
  • Ft -- Forecast for period t
  • At -- Actual sales for period t
  • Bt -- Base level component for period t
  • et -- Random element for period t

7
BASE-LEVEL FORECASTING MODELS
  • Example tricycle sales at Bikes-R-Us
  • Actual July Sales 105
  • True Base level for July 100
  • Random spike for July 105-100 5
  • Assumption At Bt et 105 100 5
  • Practical implications for forecasting
  • Step 1 Smooth randomness out of At to estimate
    Bt
  • Step 2 Set Ft1 Bt

8
NAÏVE METHOD
  • No smoothing of data
  • Step 1 Bt At
  • Step 2 Ft1 Bt

9
NAÏVE METHOD
  • No smoothing of data
  • Step 1 Bt At
  • Step 2 Ft1 Bt

10
NAÏVE METHOD
  • No smoothing of data
  • Step 1 Bt At
  • Step 2 Ft1 Bt

11
NAÏVE METHOD
  • No smoothing of data
  • Step 1 Bt At
  • Step 2 Ft1 Bt

12
FORECAST EVALUATION
  • Need to compare forecast to actual sales
  • BIAS
  • Too high or to low (on average)?
  • Mean Absolute Deviation (MAD)
  • Off by how much, per period (on average)?
  • Mean Absolute Percentage Error (MAPE)
  • A relative measure of MAD

13
FORECAST EVALUATION
  • Need to introduce terminology

14
FORECAST EVALUATION
15
FORECAST EVALUATION
16
FORECAST EVALUATION
17
SIMPLE MOVING AVERAGE
  • Smoothes out randomness by averaging positive and
    negative random elements over several periods
  • n -- number of periods
  • Step 1
  • Step 2 Ft1 Bt

18
SIMPLE MOVING AVERAGE
  • Smoothes out randomness by averaging positive and
    negative random elements over several periods
  • n -- number of periods
  • Step 1
  • Step 2 Ft1 Bt

19
SIMPLE MOVING AVERAGE
  • Smoothes out randomness by averaging positive and
    negative random elements over several periods
  • n -- number of periods
  • Step 1
  • Step 2 Ft1 Bt

20
SIMPLE MOVING AVERAGE
  • Smoothes out randomness by averaging positive and
    negative random elements over several periods
  • n -- number of periods
  • Step 1
  • Step 2 Ft1 Bt

21
WEIGHTED MOVING AVERAGE
  • Same idea as SMA, but less smoothing more
    weight on recent sales data
  • n -- number of periods
  • ai weight applied to period t-i1
  • Step 1
  • Step 2 Ft1 Bt

22
WEIGHTED MOVING AVERAGE
  • Same idea as SMA, but less smoothing more
    weight on recent sales data
  • n -- number of periods
  • ai weight applied to period t-i1
  • Step 1
  • Step 2 Ft1 Bt

23
WEIGHTED MOVING AVERAGE
  • Same idea as SMA, but less smoothing more
    weight on recent sales data
  • n -- number of periods
  • ai weight applied to period t-i1
  • Step 1
  • Step 2 Ft1 Bt

24
WEIGHTED MOVING AVERAGE
  • Same idea as SMA, but less smoothing more
    weight on recent sales data
  • n -- number of periods
  • ai weight applied to period t-i1
  • Step 1
  • Step 2 Ft1 Bt

25
EXPONENTIAL SMOOTHING (I)
  • Simpler equation, equivalent to WMA
  • a exponential smoothing parameter (0lt alt1)
  • Step 1
  • Step 2 Ft1 Bt

26
EXPONENTIAL SMOOTHING (I)
  • Simpler equation, equivalent to WMA
  • a exponential smoothing parameter (0lt alt1)
  • Step 1
  • Step 2 Ft1 Bt

27
EXPONENTIAL SMOOTHING (I)
  • Simpler equation, equivalent to WMA
  • a exponential smoothing parameter (0lt alt1)
  • Step 1
  • Step 2 Ft1 Bt

28
EXPONENTIAL SMOOTHING (I)
  • Simpler equation, equivalent to WMA
  • a exponential smoothing parameter (0lt alt1)
  • Step 1
  • Step 2 Ft1 Bt

29
EXPONENTIAL SMOOTHING (I)
  • Simpler equation, equivalent to WMA
  • a exponential smoothing parameter (0lt alt1)
  • Step 1
  • Step 2 Ft1 Bt

30
EXPONENTIAL SMOOTHING (II)
  • A higher smoothing parameter means less smoothing
    and a more reactive forecast

31
E.S. WITH TREND
  • Assumes existence of Trend and Base Level
  • Tt Trend component in period t
  • a Base-level smoothing parameter (0lt alt1)
  • b Trend smoothing parameter (0lt blt1)
  • Step 1
  • Step 2 Ft1 Bt Tt

32
E.S. WITH TREND
  • Assumes existence of Trend and Base Level
  • Tt Trend component in period t
  • a Base-level smoothing parameter (0lt alt1)
  • b Trend smoothing parameter (0lt blt1)
  • Step 1
  • Step 2 Ft1 Bt Tt

33
E.S. WITH TREND
  • Assumes existence of Trend and Base Level
  • Tt Trend component in period t
  • a Base-level smoothing parameter (0lt alt1)
  • b Trend smoothing parameter (0lt blt1)
  • Step 1
  • Step 2 Ft1 Bt Tt

34
E.S. WITH TREND
  • Assumes existence of Trend and Base Level
  • Tt Trend component in period t
  • a Base-level smoothing parameter (0lt alt1)
  • b Trend smoothing parameter (0lt blt1)
  • Step 1
  • Step 2 Ft1 Bt Tt

35
E.S. WITH TREND
  • Assumes existence of Trend and Base Level
  • Tt Trend component in period t
  • a Base-level smoothing parameter (0lt alt1)
  • b Trend smoothing parameter (0lt blt1)
  • Step 1
  • Step 2 Ft1 Bt Tt

36
E.S. WITH TREND
  • Assumes existence of Trend and Base Level
  • Tt Trend component in period t
  • a Base-level smoothing parameter (0lt alt1)
  • b Trend smoothing parameter (0lt blt1)
  • Step 1
  • Step 2 Ft1 Bt Tt

37
E.S. WITH TREND SEASONS
  • St Seasonality component in period t
  • L Number of seasons in a year
  • g Seasonality smoothing parameter (0lt glt1)
  • Step 1
  • Step 2 Ft1 (Bt Tt )St-L1

38
E.S. WITH TREND SEASONS
  • St Seasonality component in period t
  • L Number of seasons in a year
  • g Seasonality smoothing parameter (0lt glt1)
  • Step 1
  • Step 2 Ft1 (Bt Tt )St-L1

39
E.S. WITH TREND SEASONS
  • St Seasonality component in period t
  • L Number of seasons in a year
  • g Seasonality smoothing parameter (0lt glt1)
  • Step 1
  • Step 2 Ft1 (Bt Tt )St-L1

40
E.S. WITH TREND SEASONS
  • St Seasonality component in period t
  • L Number of seasons in a year
  • g Seasonality smoothing parameter (0lt glt1)
  • Step 1
  • Step 2 Ft1 (Bt Tt )St-L1

41
E.S. WITH TREND SEASONS
  • St Seasonality component in period t
  • L Number of seasons in a year
  • g Seasonality smoothing parameter (0lt glt1)
  • Step 1
  • Step 2 Ft1 (Bt Tt )St-L1

42
E.S. WITH TREND SEASONS
  • St Seasonality component in period t
  • L Number of seasons in a year
  • g Seasonality smoothing parameter (0lt glt1)
  • Step 1
  • Step 2 Ft1 (Bt Tt )St-L1

43
E.S. WITH TREND SEASONS
  • St Seasonality component in period t
  • L Number of seasons in a year
  • g Seasonality smoothing parameter (0lt glt1)
  • Step 1
  • Step 2 Ft1 (Bt Tt )St-L1

44
E.S. WITH TREND SEASONS
  • St Seasonality component in period t
  • L Number of seasons in a year
  • g Seasonality smoothing parameter (0lt glt1)
  • Step 1
  • Step 2 Ft1 (Bt Tt )St-L1

45
E.S. WITH TREND SEASONS
  • St Seasonality component in period t
  • L Number of seasons in a year
  • g Seasonality smoothing parameter (0lt glt1)
  • Step 1
  • Step 2 Ft1 (Bt Tt )St-L1

46
E.S. WITH TREND SEASONS
  • St Seasonality component in period t
  • L Number of seasons in a year
  • g Seasonality smoothing parameter (0lt glt1)
  • Step 1
  • Step 2 Ft1 (Bt Tt )St-L1

47
E.S. WITH TREND SEASONS
  • St Seasonality component in period t
  • L Number of seasons in a year
  • g Seasonality smoothing parameter (0lt glt1)
  • Step 1
  • Step 2 Ft1 (Bt Tt )St-L1

48
FORECASTING MORE THAN ONE PERIOD AHEAD
  • m periods ahead to be forecast
  • Base level forecasts Ftm Bt
  • Forecasts with trend Ftm Bt mTt
  • Forecasts with seasonality Ftm (Bt mTt
    )St-Lm

49
SELECTING A TECHNIQUE
  • Ockham's razor -- use the simplest possible model
    or theory (William of Ockham, 1300-1349, England)
  • 1) Determine type of technique which is
    appropriate (i.E., Base-level, trend, etc.)
  • 2) Select a group of competing techniques which
    satisfy condition (1)
  • 3) Select a set of data as a test set
  • 4) Simulate forecasts for this set of data using
    all techniques from (2)
  • 5) Pick the technique with the best combination
    of MAD/MAPE and Bias
Write a Comment
User Comments (0)
About PowerShow.com