Factor trinomials' - PowerPoint PPT Presentation

1 / 53
About This Presentation
Title:

Factor trinomials'

Description:

... 3x 12 (x 3)(x 4) Trinomial Form. F O I L. Factored Form ... Trinomial Form. F O I L. Factored Form. Factor x2 10x 9. Step 1: x2 10x 9 = (x )(x ) ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 54
Provided by: chr1256
Category:

less

Transcript and Presenter's Notes

Title: Factor trinomials'


1
Section 5.4
  • Factor trinomials.

2
Factoring Trinomials
  • Factoring trinomials involves a certain amount of
    trial and error.
  • Seeing patterns in factored forms can reduce the
    amount of trial and error that is needed.

3
Factoring Trinomials
4
Factoring Trinomials
5
Factoring Trinomials
6
(No Transcript)
7
Factor x2 10x 9
  • Step 1 x2 10x 9 (x )(x )

8
Factor x2 10x 9
  • Step 1 x2 10x 9 (x )(x )
  • Step 2 List pairs of factors of the constant
    9
  • 9 33 and 9 91

9
Factor x2 10x 9
  • Step 1 x2 10x 9 (x )(x )
  • Step 2 List pairs of factors of the constant
    9
  • 9 33 and 9 91
  • Step 3 Try various combinations of factors
  • (x 3)(x 3) x2 3x 3x 9 x2 9

10
Factor x2 10x 9
  • Step 1 x2 10x 9 (x )(x )
  • Step 2 List pairs of factors of the constant
    9
  • 9 33 and 9 91
  • Step 3 Try various combinations of factors
  • (x 3)(x 3) x2 3x 3x 9 x2 9
  • (x 3)(x 3) x2 3x 3x 9 x2 6x 9

11
Factor x2 10x 9
  • Step 1 x2 10x 9 (x )(x )
  • Step 2 List pairs of factors of the constant
    9
  • 9 33 and 9 91
  • Step 3 Try various combinations of factors
  • (x 3)(x 3) x2 3x 3x 9 x2 9
  • (x 3)(x 3) x2 3x 3x 9 x2 6x 9
  • (x 3)(x 3) x2 3x 3x 9 x2 6x 9

12
Factor x2 10x 9
  • Step 1 x2 10x 9 (x )(x )
  • Step 2 List pairs of factors of the constant
    9
  • 9 33 and 9 91
  • Step 3 Try various combinations of factors
  • (x 3)(x 3) x2 3x 3x 9 x2 9
  • (x 3)(x 3) x2 3x 3x 9 x2 6x 9
  • (x 3)(x 3) x2 3x 3x 9 x2 6x 9
  • (x 9)(x 1) x2 x 9x 9 x2 10x 9

13
Factor x2 10x 9
  • Step 1 x2 10x 9 (x )(x )
  • Step 2 List pairs of factors of the constant
    9
  • 9 33 and 9 91
  • Step 3 Try various combinations of factors
  • (x 3)(x 3) x2 3x 3x 9 x2 9
  • (x 3)(x 3) x2 3x 3x 9 x2 6x 9
  • (x 3)(x 3) x2 3x 3x 9 x2 6x 9
  • (x 9)(x 1) x2 x 9x 9 x2 10x 9
  • So x2 10x 9 (x 9)(x 1)

14
Factor a2 a 12
  • Step 1 a2 a 12 (a )(a )

15
Factor a2 a 12
  • Step 1 a2 a 12 (a )(a )
  • Step 2 List pairs of factors of the constant
    9
  • 12 34 and 12 62 and 12 112

16
Factor a2 a 12
  • Step 1 a2 a 12 (a )(a )
  • Step 2 List pairs of factors of the constant
    9
  • 12 34 and 12 62 and 12 112
  • Step 3 Try various combinations of factors
  • (a 4)(a 3) a2 3a 4a 12 a2 7a 12

17
Factor a2 a 12
  • Step 1 a2 a 12 (a )(a )
  • Step 2 List pairs of factors of the constant
    9
  • 12 34 and 12 62 and 12 112
  • Step 3 Try various combinations of factors
  • (a 4)(a 3) a2 3a 4a 12 a2 7a 12
  • (a 4)(a 3) a2 3a 4a 12 a2 7a 12

18
Factor a2 a 12
  • Step 1 a2 a 12 (a )(a )
  • Step 2 List pairs of factors of the constant
    9
  • 12 34 and 12 62 and 12 112
  • Step 3 Try various combinations of factors
  • (a 4)(a 3) a2 3a 4a 12 a2 7a 12
  • (a 4)(a 3) a2 3a 4a 12 a2 7a 12
  • (a 4)(a 3) a2 3a 4a 12 a2 a 12

19
Factor a2 a 12
  • Step 1 a2 a 12 (a )(a )
  • Step 2 List pairs of factors of the constant
    9
  • 12 34 and 12 62 and 12 112
  • Step 3 Try various combinations of factors
  • (a 4)(a 3) a2 3a 4a 12 a2 7a 12
  • (a 4)(a 3) a2 3a 4a 12 a2 7a 12
  • (a 4)(a 3) a2 3a 4a 12 a2 a 12
  • (a 4)(a 3) a2 3a 4a 12 a2 a 12

20
Factor a2 a 12
  • Step 1 a2 a 12 (a )(a )
  • Step 2 List pairs of factors of the constant
    9
  • 12 34 and 12 62 and 12 112
  • Step 3 Try various combinations of factors
  • (a 4)(a 3) a2 3a 4a 12 a2 7a 12
  • (a 4)(a 3) a2 3a 4a 12 a2 7a 12
  • (a 4)(a 3) a2 3a 4a 12 a2 a 12
  • (a 4)(a 3) a2 3a 4a 12 a2 a 12
  • So a2 a 12 (a 4)(a 3)

21
Tip
  • To factor x2 bx c when c is positive, find
    two numbers with the same sign as the middle
    term.
  • x2 5x 5 (x 3)(x 2)
  • x2 14x 24 (x 12)(x 2)

22
Tip
  • To factor x2 bx c when c is negative, find
    two numbers with opposite signs whose sum is the
    coefficient of the middle term.
  • x2 7x 60 (x 12)(x 5)

23
2 variables
  • x2 9xy 14y2

24
2 variables
  • x2 9xy 14y2

25
2 variables
  • x2 9xy 14y2
  • x2 9xy 14y2 (x ?y)(x ?y)

26
2 variables
  • x2 9xy 14y2
  • x2 9xy 14y2 (x ?y)(x ?y)
  • c is positive so we use the same sign,
    specifically 2 negatives. (x ?y)(x ?y)
  • What divisors of 14 sum to 9?

27
2 variables
  • x2 9xy 14y2
  • x2 9xy 14y2 (x ?y)(x ?y)
  • c is positive so we use the same sign,
    specifically 2 negatives. (x ?y)(x ?y)
  • What divisors of 14 sum to 9?
  • 72 14 and 7 2 9

28
2 variables
  • x2 9xy 14y2
  • x2 9xy 14y2 (x ?y)(x ?y)
  • c is positive so we use the same sign,
    specifically 2 negatives. (x ?y)(x ?y)
  • What divisors of 14 sum to 9?
  • 72 14 and 7 2 9
  • x2 9xy 14y2 (x 2y)(x 7y)

29
  • 3x2 3x 18

30
  • 3x2 3x 18
  • 3x2 3x 18 3(x2 x 6)

31
  • 3x2 3x 18
  • 3x2 3x 18 3(x2 x 6)
  • 3(x2 x 6) 3(x ?)(x ?)

32
  • 3x2 3x 18
  • 3x2 3x 18 3(x2 x 6)
  • 3(x2 x 6) 3(x ?)(x ?)
  • c is negative so we use the opposite signs, whose
    sum is 1. 3(x ?)(x ?)

33
  • 3x2 3x 18
  • 3x2 3x 18 3(x2 x 6)
  • 3(x2 x 6) 3(x ?)(x ?)
  • c is negative so we use the opposite signs, whose
    sum is 1. 3(x ?)(x ?)
  • What divisors of 6 sum to 1?

34
  • 3x2 3x 18
  • 3x2 3x 18 3(x2 x 6)
  • 3(x2 x 6) 3(x ?)(x ?)
  • c is negative so we use the opposite signs, whose
    sum is 1. 3(x ?)(x ?)
  • What divisors of 6 sum to 1?
  • 3(-2) -6 and 3 -2 1

35
  • 3x2 3x 18
  • 3x2 3x 18 3(x2 x 6)
  • 3(x2 x 6) 3(x ?)(x ?)
  • c is negative so we use the opposite signs, whose
    sum is 1. 3(x ?)(x ?)
  • What divisors of 6 sum to 1?
  • 3(-2) -6 and 3 -2 1
  • 3x2 3x 18 3(x 2)(x 3)

36
(No Transcript)
37
Factor 2x2 9x 7
  • 2x2 9x 7 ( )( )
  • 2x2 (2x)(x) and 7 (7)(1)
  • So 2x2 9x 7 (2x )(x )
  • c is positive so use same signs
  • Try various combinations of factors to finish
  • (2x 1)(x 7) 2x2 14x x 7 2x2 15x
    7
  • (2x 7)(x 1) 2x2 2x 7x 7 2x2 9x
    7
  • So 2x2 9x 7 (2x 7)(x 1)

38
Factor 2x2 9x 7
  • 2x2 9x 7 ( )( )

39
Factor 2x2 9x 7
  • 2x2 9x 7 ( )( )
  • 2x2 (2x)(x) and 7 (7)(1)
  • So 2x2 9x 7 (2x )(x )

40
Factor 2x2 9x 7
  • 2x2 9x 7 ( )( )
  • 2x2 (2x)(x) and 7 (7)(1)
  • So 2x2 9x 7 (2x )(x )
  • c is positive so use same signs
  • Try various combinations of factors to finish

41
Factor 2x2 9x 7
  • 2x2 9x 7 ( )( )
  • 2x2 (2x)(x) and 7 (7)(1)
  • So 2x2 9x 7 (2x )(x )
  • c is positive so use same signs
  • Try various combinations of factors to finish
  • (2x 1)(x 7) 2x2 14x x 7 2x2 15x
    7

42
Factor 2x2 9x 7
  • 2x2 9x 7 ( )( )
  • 2x2 (2x)(x) and 7 (7)(1)
  • So 2x2 9x 7 (2x )(x )
  • c is positive so use same signs
  • Try various combinations of factors to finish
  • (2x 1)(x 7) 2x2 14x x 7 2x2 15x
    7
  • (2x 7)(x 1) 2x2 2x 7x 7 2x2 9x
    7
  • So 2x2 9x 7 (2x 7)(x 1)

43
Factor Trinomials by Grouping
  • Factoring ax2 bx c by grouping
  • Multiply a times c.
  • Find factors of ac whose sum is b.
  • Rewrite bx as the sum/difference of the factors
    found above.
  • Factor by grouping

44
Factor 6x2 19x 15
  • 6x2 19x 15

45
Factor 6x2 19x 15
  • 6x2 19x 15
  • (6)(15) 90 (10)(9) and 9 10 19

46
Factor 6x2 19x 15
  • 6x2 19x 15
  • (6)(15) 90 (10)(9) and 9 10 19
  • 6x2 19x 15 6x2 10x 9x 15

47
Factor 6x2 19x 15
  • 6x2 19x 15
  • (6)(15) 90 (10)(9) and 9 10 19
  • 6x2 19x 15 6x2 10x 9x 15
  • 2x(3x 5) 3(3x 5)

48
Factor 6x2 19x 15
  • 6x2 19x 15
  • (6)(15) 90 (10)(9) and 9 10 19
  • 6x2 19x 15 6x2 10x 9x 15
  • 2x(3x 5) 3(3x 5)
  • (3x 5)(2x 3)

49
Factor 4x2 27x 18
  • 4x2 27x 18

50
Factor 4x2 27x 18
  • 4x2 27x 18
  • (4)(18) 72 (24)(3) and 24 3 27

51
Factor 4x2 27x 18
  • 4x2 27x 18
  • (4)(18) 72 (24)(3) and 24 3 27
  • 4x2 27x 18 4x2 24x 3x 18

52
Factor 4x2 27x 18
  • 4x2 27x 18
  • (4)(18) 72 (24)(3) and 24 3 27
  • 4x2 27x 18 4x2 24x 3x 18
  • 4x(x 6) 3(x 6)

53
Factor 4x2 27x 18
  • 4x2 27x 18
  • (4)(18) 72 (24)(3) and 24 3 27
  • 4x2 27x 18 4x2 24x 3x 18
  • 4x(x 6) 3(x 6)
  • (x 6)(4x 3)
Write a Comment
User Comments (0)
About PowerShow.com